首页|铜锌锡硫基薄膜太阳电池研究进展

铜锌锡硫基薄膜太阳电池研究进展

扫码查看
光伏技术为日益增长的能源需求提供了一种可持续的解决方案.如今,各种高性能太阳电池层出不穷,由无机材料制成的薄膜太阳电池已成为太阳电池的主要类别之一,在快速发展的光伏市场显示出巨大潜力.地球上储量丰富且环境友好的锌黄锡矿Cu2ZnSn(S,Se)4(CZTSSe)被认为是极具可能取代Cu(In,Ga)Se2(CIGS)和CdTe的新一代光伏材料.CZTSSe光伏器件在过去几年中取得了显著的进步,最高效率达到14.9%,但仍远低于CIGS(23.6%)和CdTe(22.1%).不理想的前后界面是填充因子难以提高的主要原因之一.背界面处较厚的Mo(S,Se)2层会导致载流子传输势垒并对吸收层的晶体质量产生负面影响;高密度的界面缺陷、不利的能带匹配以及跨界面的结构不均匀性是导致异质结界面复合的主要因素.同时,CZTSSe作为最复杂的化合物半导体之一,其缺陷化学性质比CIGS和CdTe更为复杂,深能级固有缺陷作为复合中心,导致较短的载流子寿命,大量缺陷簇引入了相当大的电位波动.由于低的填充因子和大的开路电压亏损,目前CZTSSe基太阳电池的性能停滞不前.本文关注于界面工程、阳离子取代、硒化热处理及后退火等使CZTSSe基器件效率逐步提高的工艺,综述了近年来提升CZTSSe基光伏器件性能的最先进策略及其作用机制,并对本领域未来的发展进行了展望.
Research progress of kesterite solar cells
Photovoltaic technology offers a sustainable solution to the challenge of increasing energy demand.Nowadays,various high-performance solar cells are emerging.Thin-film solar cells made from inorganic materials have become one of the major categories of solar cells,showing potential in the fast-growing photovoltaic(PV)market.The production technology of Cu(In,Ga)Se2(CIGS)solar cells and CdTe solar cells has reached a mature level.The earth-abundant and environmentally friendly kerterite Cu2ZnSn(S,Se)4(CZTSSe)is a promising alternative to chalcopyrite CIGS and CdTe for PV applications and is considered to be a cost-effective next-generation solar cell material.The crystal structure of the CZTSSe absorber material is derived from CIGS,in which In and Ga are replaced by one group Ⅱ(Zn)cation and one group Ⅳ(Sn)cation,and has a similar lattice and energy band structure with CIGS.Therefore,CZTSSe inherits the advantages of high absorption coefficient,adjustable band gap,and inherent P-type conductivity,and has the new advantages of non-toxicity and abundant element reserves.It is a new generation of thin film photovoltaic technology with high efficiency,stability,safety,environmental protection,and low price.CZTSSe PV technology has made significant progress in the past few years,reaching a maximum efficiency of 14.9%,but still far below CIGS(23.6%)and CdTe(22.1%).The undesirable back/front interface is one of the main reasons for the difficulty in improving the fill factor.The detrimental interface reaction results in a large number of secondary phases,voids and defects in absorbers,which can form abundant recombination centers and limit the minority carrier diffusion length.The thicker Mo(S,Se)2 layer at the back interface leads to carrier transport barriers and has a negative impact on the crystalline quality of the absorber;high density of interface defects,unfavorable band alignment,and structural inhomogeneity across the front interface are the main factors leading to heterojunction recombination.Meanwhile,kesterite,as one of the most complex compound semiconductors,has a more complex defect chemistry than CIGS and CdTe,making the control of intrinsic defects a major challenge.Deep limit defects,such as deep defect SnZn and associated[CuZn+SnZn]clusters,act as deep recombination centers,leading to short carrier lifetimes.In addition,a large number of defect clusters like[2CuZn+SnZn]introduce considerable potential(i.e.,band or electrostatic)fluctuations.As a result,the performance of kerterite-based solar cells is currently stagnant due to low fill factor and large open-circuit voltage(Voc)deficits.In this review,the state-of-the-art strategies to improve the device performance are provided,with a particular focus on back and front-interface engineering,cation substitution,and selenization annealing,post-annealing processes and so on.These strategies have led to step-wise improvements in the power conversion efficiency(PCE)of the corresponding kesterite solar cells and are the most promising approaches to achieve further efficiency breakthroughs in kesterite solar cells.This paper reviews the recent research progress around these pathways in kesterite solar cells and,more importantly,provides a comprehensive understanding of the mechanisms at play and an outlook on the future development of kesterite solar cells.

thin film solar cellsCZTSSeefficiency improvement mechanisminterface engineeringdefect passivation

赵云海、陈烁、苏正华、罗景庭、章向华、梁广兴

展开 >

深圳大学物理与光电工程学院,深圳 518000

Glass and Ceramics Laboratory,Rennes Institute of Chemical Sciences,University of Rennes,Rennes 35000,France

薄膜太阳电池 铜锌锡硫硒 效率提升机制 界面工程 缺陷钝化

国家自然科学基金深圳市高等院校稳定支持计划

6207410220220808165025003

2023

科学通报
中国科学院国家自然科学基金委员会

科学通报

CSTPCDCSCD北大核心
影响因子:1.269
ISSN:0023-074X
年,卷(期):2023.68(34)
  • 1
  • 3