首页|C60超原子近自由电子能带

C60超原子近自由电子能带

扫码查看
从传统观念理解,有机分子及其固体的光电特性主要由前线轨道及其相互作用决定。本文以C60为例,展示新的分子轨道和相互作用及其在有机半导体中产生的类金属近自由电子能带。一类是C60超原子分子轨道:超原子分子轨道广泛存在于具有中空结构的体系,如层状、管状、笼状结构甚至芳香性分子中。其波函数模的平方在空间上非常弥散,因此在范德华固体中也能杂化生成近自由电子能带。另一类是C60类共价准键相互作用:在黑磷表面被压缩的C60单层中,C60像超原子一样通过被基底模板化的π-π堆叠类共价准键相互作用,生成近自由电子能带。同传统观点相比,前者是利用能量更高、空间更扩展的镜像态在较远距离下生成近自由电子能带;而后者则是通过能量更低、更束缚的前线分子轨道在更短的距离中获得。两者均体现了以整个分子为超原子来相互作用的超原子材料制造思想,基于这一思想,有望构筑具有超高载流子迁移率的新型范德华有机半导体。
Superatom nearly-free-electron-like bands in C60 assemblies
The electronic and optical properties of molecules and molecular solids are generally considered from the perspective of the frontier orbitals and their intermolecular interactions.In this review,we introduce a new paradigm for understanding molecular orbitals,their intermolecular hybridizations,and how they lead to nearly-free-electron(NFE)-like bands in molecular assemblies.Achieving NFE-like bands in organic semiconductor materials will significantly influence their use in electronic and optoelectronic applications.C60,one of the most extensively investigated semiconducting molecules,is used as a prototype to demonstrate the emergence of two types of NFE bands in van der Waals(vdW)C60 assemblies.First,we show that NFE bands are hybridized with superatom molecular orbitals(SAMOs).SAMOs result from long-range polarization interactions,mainly shown in the screening of an external charge at a solid/vacuum interface.The polarization interaction is responsible for the universal image potential and the related unoccupied image potential(IP)states.In C60,the concave side of the C sheet reduces the energy of the IP states,converting them into diffusive atom-like orbitals called SAMOs.SAMOs,originating from the universal polarization interaction,are commonly found in molecules/assemblies with hollow structures,such as graphene layers,carbon nanotubes,fullerenes,and aromatic molecules.Due to the delocalization of the IP states,SAMOs diffuse like atom-like orbitals.Then,they hybridize similarly to atoms in a metal,forming NFE bands in C60 assemblies where the intermolecular distances are significant vdW distances.In C60 assemblies,the predicted electron mobilities of SAMOs are 21600-58100 cm2V-1s-1.Second,we highlight concatenated NFE bands with superatom covalent-like quasi-bonding.In C60 monolayers assembled on black phosphorus surfaces,π-π interactions are favored with suitable substrate vdW templating,initiating covalent-like quasi-bonding interactions between C60,similar to covalent bonding in atoms.This leads to a C60 NFE-like conduction band,with calculated electron mobilities of~200 to 440 cm2 V-1 s-1,exceeding those of most organic semiconductor materials.In contrast to the traditional perspective where physicists and chemists consider the intermolecular interactions between C60,SAMOs and covalent-like quasi-bonding behave differently.In the SAMO case,SAMOs have higher energy and are delocalized IP states that hybridize at larger intermolecular distances to form NFE bands.In covalent-like quasi-bonding interactions,lower energy frontier orbitals are hybridized at compressed intermolecular distances to form NFE bands.In the proposed framework,the energy of the molecular orbitals align with their delocalization character and is consistent with the intermolecular distances where the NFE bands can be formed.This introduces a new paradigm for understanding molecular interactions aligned with the method of atom manufacturing,where whole molecules/assemblies behave as superatoms,and intermolecular interactions can be tailored using unique superatomic interactions to generate an organic semiconductor with unique properties,such as vdW organic semiconductors with ultra-high carrier mobilities.

C60van der Waals distancesuperatom molecular orbitalscovalent-like quasi-bondingnearly-free-electron like bandscarrier mobility

崔兴霞、苑青、娄灿灿、李亚菲、丰敏

展开 >

武汉大学物理科学与技术学院,人工微纳结构教育部重点实验室,武汉 430072

武汉大学高等研究院,武汉 430072

C60 范德华间距 超原子分子轨道 类共价准键 近自由电子能带 载流子迁移率

国家自然科学基金国家自然科学基金国家重点研发计划国家重点研发计划中国科学院战略性先导科技专项(B类)

11574364117742672017YFA03035002018YFA0305802XDB30000000

2024

科学通报
中国科学院国家自然科学基金委员会

科学通报

CSTPCD北大核心
影响因子:1.269
ISSN:0023-074X
年,卷(期):2024.69(10)
  • 85