科学通报2024,Vol.69Issue(10) :1373-1384.DOI:10.1360/TB-2023-0828

我国典型区域二氧化碳和细颗粒物精细化协同减排路径

Refined pathway for collaborative reduction of carbon dioxide and fine particulate matter in China's key areas

赵焕 许博 徐晗 王振宇 高洁 黄俊波 戴启立 冯银厂 史国良
科学通报2024,Vol.69Issue(10) :1373-1384.DOI:10.1360/TB-2023-0828

我国典型区域二氧化碳和细颗粒物精细化协同减排路径

Refined pathway for collaborative reduction of carbon dioxide and fine particulate matter in China's key areas

赵焕 1许博 1徐晗 1王振宇 1高洁 1黄俊波 1戴启立 1冯银厂 1史国良1
扫码查看

作者信息

  • 1. 南开大学环境科学与工程学院,国家环境保护城市空气颗粒物污染防治重点实验室,天津 300350;南开大学环境科学与工程学院,中国气象局-南开大学大气环境与健康研究联合实验室,天津 300350
  • 折叠

摘要

随着碳达峰、碳中和目标的提出,我国环境保护进入减污降碳协同治理新阶段.目前研究主要探寻空气质量政策或气候政策对二氧化碳和细颗粒物的减排效益.而从二氧化碳和细颗粒物排放终端能源消费重点行业、主要能源以及主导因素等角度出发,来探究我国典型区域协同减排路径精细化方法的研究则鲜见报道.本研究基于2000~2020年我国京津冀、长江三角洲、珠江三角洲典型区域能源消耗数据,首先探明了3个典型区域二氧化碳和细颗粒物终端能源消费的重点排放行业均为工业;并进一步甄别了终端能源消费重点行业中PM2.5排放主要能源为煤类能源,而CO2排放主要能源由煤类能源逐渐转向煤、气类能源,但煤类仍为主导地位;随后使用因素分解模型解析了能源强度、技术进步等主导因素对单位国内生产总值的二氧化碳以及细颗粒物的影响效应;最终利用能源-环境核算预测模型,基于上述研究识别的终端能源消费重点行业、主要能源以及主导因素进行情景分析,旨在判断典型区域不同情景下碳达峰情况,进而寻找协同减排最优路径.结果发现,"技术进步"因素在前期减排效果最好;"能效提升"因素的减排效果在长时期碳污协同减排将起到关键作用,表明未来针对工业排放等终端能源消费重点行业,关注煤、气类等主要能源,采取能效提升、技术进步等手段措施,能够对减污降碳协同增效目标的实现产生最佳收益.希望本研究能为我国典型区域二氧化碳和细颗粒物合理化、精细化协同减排和管控提供科学证据.

Abstract

Air pollution and climate change are two major challenges that have emerged in the recent century.Carbon dioxide(CO2),known for absorbing infrared radiation,contributes to global warming and climate change.Fine particulate matter(PM2.5),one of the most important air pollutants,adversely affects regional air quality and poses significant health risks.Numerous studies have established that CO2 and PM2.5 share common emission sources from human activities.Therefore,identifying and understanding these common sources is crucial for developing effective collaborative strategies to reduce ambient levels of CO2 and PM2.5.However,while current research focuses primarily on separate reduction strategies for air quality(targeting fine particulate matter)or climate policies(targeting carbon dioxide),there is a notable gap in comprehensive studies that address the synergistic reduction of both PM2.5 and CO2 especially in key regions in China.Specifically,detailed investigations into the major energy consumption sectors,predominant energy types,and driving factors influencing PM2.5 and CO2 in these regions remain scarce.This underscores the need for refined,integrated approaches to address these two interlinked environmental issues.In this work,we examined energy consumption data from 2000 to 2020 in three distinct regions in China:The Beijing-Tianjin-Hebei region,the Pearl River Delta region,and the Yangtze River Delta region.Our objective was to dissect the energy consumption sectors,energy types,and driving factors contributing to PM2.5 and CO2 emissions.We found that industrial emissions were the primary energy consuming sector among seven end-use energy consumption sectors in all three typical regions for both of PM2.5 and CO2.We then further analyzed the main energy type within this key sector.Our analysis shows that coal was the predominant energy source for PM2.5 emissions throughout 2000 to 2020.In contrast,for CO2 emissions,coal dominated from 2000 to 2010,but from 2010 to 2020,both coal and gas(with coal still being relatively dominant)were significant contributors.To further understand the factors driving carbon dioxide and fine particulate matter emissions per unit GDP,we employed a factor decomposition model.The decomposition model found that"energy structure effect"was the key driving factor for both of PM2.5 and CO2 from 2000 to 2010;while"energy efficiency improvement"and"energy efficiency improvement"were two driving factor for both of PM2.5 and CO2 from 2010 to 2020.Building on this analysis,we utilized an energy-environment accounting prediction model for scenario analysis.This approach allowed us to simulate PM2.5 and CO2 emission trends under different scenarios in the three regions,aiming to identify the most effective pathway for collaborative reduction.Our model results indicate that in the early stage,"technological improvement"is a critical driver for reducing emissions.However,as we look towards long-term strategies,"energy efficiency improvement"emerges as a pivotal factor for sustained collaborative emission reduction.In summary,the comprehensive results of this study provide robust quantitative evidence that future efforts should prioritize the key end-use energy consumption sector(industrial emissions),major energy types(coal and gas),and driving factors(energy efficiency improvement and technological improvement).And the prediction results show that the factor of"technological improvement"has the best emission reduction effect in the early stage;"energy efficiency improvement"factor will play a key role in the long-term reduction.By focusing on these areas,significant benefits can be achieved in synergistically reducing air pollution and CO2 emissions.This study offers valuable scientific insights for formulating effective strategies to reduce carbon dioxide and fine particulate matter,particularly in key areas of China.

关键词

二氧化碳/细颗粒物/LEAP模型/情景分析/协同控制/精细化

Key words

carbon dioxide/fine particulate matter/LEAP model/scenario analysis/synergistic control/refinement

引用本文复制引用

基金项目

国家自然科学基金(42077191)

天津市研究生科研创新项目(2022SKY002)

国家重点研发计划(2022YFC3703400)

出版年

2024
科学通报
中国科学院国家自然科学基金委员会

科学通报

CSTPCD北大核心
影响因子:1.269
ISSN:0023-074X
参考文献量61
段落导航相关论文