首页|大规模铌酸锂光子集成系统的超快激光光刻研究进展

大规模铌酸锂光子集成系统的超快激光光刻研究进展

扫码查看
飞秒光刻辅助化学机械刻蚀技术(photolithography assisted chemo-mechanical etching,PLACE)实现了在薄膜铌酸锂(thin-film lithium niobate,TFLN)上高品质大规模光子集成电路(photonic integrated circuit,PIC)的制造,并推动了光子集成电路重大应用领域的持续发展,产生了一系列高性能PIC应用,诸如高Q微谐振器、低损耗波导、波导放大器、阵列波导光栅(arrayed waveguide grating,AWG)和电光(electro-optic,EO)可调谐/可编程光子器件等。针对PIC器件和光刻系统的大规模生产,本文介绍了一种超高速高分辨率激光光刻制造系统,采用高重复频率飞秒激光器和高速多边形激光扫描仪,可实现200 nm分辨率下4。8 cm2/h的光刻制造效率,并且展示了基于TFLN光子器件的晶圆级制造、晶圆级微电极结构等的应用。
Progress on ultrafast laser lithography of large-scale lithium niobate integrated photonics
The combination of advanced functional materials with high optical performance and cutting-edge micro/nano fabrication technology has ushered in a new era for integrated photonics.Thin-film lithium niobate(TFLN)has emerged as a promising material platform for the next generation photonic integrated circuits(PICs),owing to its wide transparency window from UV to mid-IR,moderately high refractive index that enables dense photonic integration while maintaining a suitable mode-size in the single-mode lithium niobate(LN)ridge waveguide,and large electro-optic(EO)as well as nonlinear optical coefficients which are critical for high-speed EO tuning and high-efficiency wavelength conversion applications.Photolithography assisted chemo-mechanical etching(PLACE),a technique developed specifically for fabricating high quality(high-Q)large-scale PICs on TFLN,has enabled fabrication of a series of building blocks of PICs ranging from high-Q micro-resonators and low-loss waveguides to waveguide amplifiers,arrayed waveguide grating(AWG)and electro optically tunable/programmable photonic circuits,showing high optical performance,such as,1.2 × 108-ultra-high-Q micro-resonator,0.025-dB/cm ultra-low-loss continuously tunable delay line,20-dB gain waveguide amplifier and 1.5-mW total power consumption matrix operation devices.Aiming at high-throughput manufacturing of the PIC devices and systems,we have developed an ultra-high-speed high-resolution laser lithography fabrication system employing a high repetition-rate femtosecond laser and a high-speed polygon laser scanner,achieving infinite field of vision(IFOV)processing,by which a lithography fabrication efficiency of 4.8 cm2/h has been achieved at a spatial resolution of 200 nm.Using the high-speed femtosecond laser lithography system,we successfully fabricate photonic structures of large footprints with reasonable propagation loss.By combining the previous femtosecond scan scheme for smoothing mask edges with a high-speed polygon scan scheme for patterning the waveguide groove part,we further improve the propagation loss.We also demonstrate wafer-scale fabrication of microelectrode structures,showing high uniformity in the fabrication process,and high-speed Mach-Zehnder interferometer(MZI)modulators.By characterizing EO performance of the MZI modulator,we achieve a voltage-length product of 1.86 V cm and a measured 3-dB bandwidth up to 70 GHz.With the continuous advances in the high-repetition-rate femtosecond laser,high-speed electronic shutter/controller and high-speed host data transmission technology,we expect the fabrication efficiency and propagation loss can be further promoted by 1-2 orders of magnitude.This will have a profound implication as miniaturization will play a central role in future society.

thin film lithium niobatephotonic integrated circuitphotolithographyfemtosecond laser micromachining

黄金鑫、陈锦明、刘招祥、宋吕斌、王冠华、孙超、伍荣波、林锦添、方致伟、张海粟、王哲、齐家、汪旻、程亚

展开 >

中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800

上海科技大学物质科学与技术学院,上海 200135

华东师范大学物理与电子科学学院极端光机电实验室,上海 200241

华东师范大学精密光谱国家重点实验室,上海 200062

展开 >

薄膜铌酸锂 光子集成电路 光刻 飞秒激光微加工

国家重点研发计划国家重点研发计划国家重点研发计划国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金上海市"科技创新行动计划"集成电路科技支撑专项上海市青年科技英才"扬帆计划"项目

2019YFA07050002022YFA14046002022YFA12051001219225112104159120041161193300512134001619914441217411312274133122041761227413021DZ110150021YF1410400

2024

科学通报
中国科学院国家自然科学基金委员会

科学通报

CSTPCD北大核心
影响因子:1.269
ISSN:0023-074X
年,卷(期):2024.69(12)
  • 27