首页|缺陷二维材料强度

缺陷二维材料强度

扫码查看
材料失效是固体力学关心的核心问题之一,强度准则是描述材料失效的重要工具。二维材料如石墨烯、六方氮化硼、过渡金属二硫化物等具有优越的力学性能,在能源环境、电子信息、航空航天、纳米器件等领域都有重要的潜在应用。二维材料缺陷不可避免,由于其原子级厚度和极低的离面刚度,缺陷残余应力会导致显著的应力集中和离面变形,从而显著降低材料的强度。尽管断裂力学理论被广泛用来描述二维材料的脆性断裂,但研究发现六方氮化硼的能量释放率超过Griffith预测值一个量级,与经典断裂力学理论预测不符。另一方面,虽然晶界强度理论解释了晶界强度随缺陷密度增加而反常升高的现象,位错堆积模型揭示了多晶石墨烯强度与晶粒尺寸间的赝Hall-Petch效应,但这些理论模型主要针对特定缺陷在单轴载荷下的失效行为,缺乏普适性。特别地,二维材料缺陷结构、加载状态多样,导致复杂的应力分布和变形失效模式,增加了建立普适性强度理论的难度。然而,从原子角度,材料失效的本质都是化学键发生断裂,特别是大部分二维材料都由共价键构成,因此从化学键失效的角度,得到化学键失效的本征标度,则有可能建立缺陷二维材料的统一强度理论。本文首先综述了近年来二维材料强度的相关实验、模拟和理论研究进展,着重介绍了缺陷二维材料的变形机理和基于化学键失效分析的缺陷二维材料统一强度准则。最后,本文讨论了二维材料强度理论的发展趋势,旨在促进缺陷二维材料强度准则的理论和应用研究。
Strength of defective two-dimensional materials
Two-dimensional(2D)materials are increasingly utilized across various fields including energy,environment,electronic information,aerospace,and nanotechnology,owing to their distinctive physical and chemical characteristics.However,their complex lattice structures and inevitable defect configurations often result in non-uniform deformations and stress concentrations,leading to intricate deformation mechanisms and mechanical failures.Therefore,a comprehensive understanding of their failure mechanisms and the development of a unified strength criterion present significant challenges.This paper provides an overview of the methodologies employed to evaluate the mechanical properties of 2D materials,encompassing experiments,simulations,and theoretical analyses.Experimental techniques such as atomic force microscopy(AFM)nanoindentation,in situ scanning electron microscope(SEM)tensile testing,and substrate tension offer valuable insights into the mechanical properties of 2D materials.While,these methods may neglect various loading states and intrinsic defects,resulting in that the measured fracture strength and Young's modulus are often lower than those of theoretical predictions.To overcome these limitations,molecular dynamics(MD)simulations and density functional theory(DFT)calculations are employed to examine the strength anisotropy under uniaxial tension along various directions,correlating these findings with fracture bond strength.Furthermore,the relationship between fracture strength and crack length aligns with the Griffith criterion,while increased defect density in GBs results in higher compressive residual stress,which can be explained by the disclination dipole model.Moreover,the dislocation-pileup model elucidates the pseudo/inverse Hall-Petch effect in polycrystalline graphene,though statistical theories suggest a decline in strength with decreasing grain size.Our recent investigations focus on elucidating the failure mechanisms of defective 2D materials under complex stress states.A unified strength criterion based on bond failure analysis is then proposed.Our findings indicate that the intrinsic bond strength is solely determined by the local chemical environment,but independent of loading states,defect types,and fracture bonds.This criterion,balancing intrinsic bond strength with the local stress state,offers a highly promising framework for the comprehensive assessment of the strength of defective 2D materials.Several pivotal aspects require attention,i.e.,intrinsic invariants in various materials,the effect of temperature,and the prediction of crack propagation through the integration of theoretical frameworks and machine learning.This review synthesizes the existing theoretical,simulation-based,and experimental efforts focused on the failure mechanisms of defective materials,aiming to offer valuable insights for guiding the design and advancement of 2D materials with superior mechanical properties.

unified strength criterionstrength of two-dimensional materialsbond failure analysisdefectsstress concentration

张国强、覃华松、刘益伦

展开 >

西安交通大学航天航空学院多尺度力学-医学交叉实验室,西安 710049

统一强度准则 二维材料强度 化学键失效分析 缺陷 应力集中

国家自然科学基金国家自然科学基金国家自然科学基金

123252041189067412102323

2024

科学通报
中国科学院国家自然科学基金委员会

科学通报

CSTPCD北大核心
影响因子:1.269
ISSN:0023-074X
年,卷(期):2024.69(22)
  • 5