首页|人口神经科学数据共享:政策生态、基础设施、实践和挑战

人口神经科学数据共享:政策生态、基础设施、实践和挑战

扫码查看
随着开放科学时代的到来,全球的数据共享政策日趋完善,科学数据共享逐步成为学术交流的必选项.科研模式及学术交流模式正发生着深刻的变革,如何让科学数据开放共享可持续发展,依然面临着来自文化、政策与实践路径上的现实阻力和挑战.本文梳理了科学数据开放共享可持续发展的必要组成及彼此间的作用关系,分析了利益相关方在数据共享中的诉求与需要付诸的投入.接着,从各方主体的科学数据共享政策情况、科学数据共享的标准及原则、数据存储库的标准规范指南、人口神经科学领域数据存储平台建设实践情况等方面,结合我国"科学数据银行:中国人彩巢计划数据社区"进行具体介绍与特征分析.人口神经科学领域的快速发展在很大程度上得益于科学数据共享,但依然面临着来自隐私安全与伦理,数据共享激励机制缺失,科研群体科学数据管理素质不足等突出问题和挑战.其中,伴随着新型科学技术的发展,隐私安全正被不断地完善和保护.针对科学数据共享的发展现状及挑战,本文基于在数据共享的政策、建立激励机制、基础设施建设、跨学科融合发展等方面的研究提出人口神经科学在科学数据共享工作上的未来发展趋势与建议.
Population neuroscience data sharing:Policy ecology,infrastructure,practices and challenges
As a frontier in the field of brain science research,population neuroscience holds immense potential for realizing the translational application of neuroimaging to education,psychology,and medicine.However,its progress hinges on the presence of robust support for interdisciplinary data sharing.Motivated by the inherent need for disciplinary advancement,researchers have undertaken a multitude of bottom-up practices in data sharing to increase research reproducibility,reduce financial costs,and improve data reusability.These practices have ushered in the era of open science and initiated a profound transformation in research paradigms and academic exchange.In the contemporary landscape,global data sharing policies are becoming increasingly stringent,rendering data sharing an essential component of academic exchange.Nevertheless,the sustainable promotion of open data sharing still faces various impediments and challenges stemming from cultural,policy,and practical factors.Overcoming these obstacles requires collaboration among all stakeholders,including data contributors,consumers,communities,policymakers,and the general public.This article critically examines the indispensable elements required for the sustainable advancement of open scientific data sharing and delves into their interconnections,analysing the demands and contributions required from stakeholders in data sharing.It addresses scientific data sharing policies from the perspectives of diverse stakeholders,the norms and principles governing scientific data sharing,the standardized guidelines for data repositories,and the practical construction of data storage platforms specific to the domain of population neuroscience.Additionally,it supplements the discourse with examples from case studies such as theScienceDB-Chinese Color Nest Project Data Community.Progress in population neuroscience has benefited immensely from the paradigm of scientific data sharing,enabling researchers to leverage shared data sets to achieve innovative research and collaboration.However,this advancement has not been devoid of challenges.Privacy and security concerns,ethical considerations,the need for robust incentive mechanisms to promote data sharing,and deficiencies in scientific data management proficiency remain pressing issues in the current landscape of scientific data sharing.Nevertheless,with the advent of new scientific technologies,continuous improvements and safeguards for privacy and security are being realized.To address these challenges,this study proposes pertinent recommendations and prognostications concerning policy development,incentive mechanisms,infrastructure augmentation,and the trajectory of interdisciplinary convergence.These recommendations focus on the following key issues:(1)Strengthening top-level design to harness collective wisdom regarding innovation pertaining to data sharing forms and the exploration of issues of privacy,security,and standard specifications;(2)enhancing recognition of data sharing contributions and advancing incentive mechanisms;(3)leveraging high-quality data sharing services to improve standardization,data analysis,and visualization while providing accompanying personnel training to promote data sharing;(4)utilizing the advantages of platforms and AI models to create opportunities for interdisciplinary integration and cross-disciplinary innovation;and(5)exploring the open data journey in China by drawing insights from pathways in different cultural contexts.

scientific data sharingdata policydata standarddata communityScienceDB

姜璐璐、高鹏、周园春

展开 >

中国科学院计算机网络信息中心,北京 100083

北京师范大学认知神经科学与学习国家重点实验室,北京 100875

中国科学院大学杭州高等研究院,杭州 310024

科学数据共享 数据政策 数据标准规范 科学数据银行 数据社区

2024

科学通报
中国科学院国家自然科学基金委员会

科学通报

CSTPCD北大核心
影响因子:1.269
ISSN:0023-074X
年,卷(期):2024.69(24)
  • 1
  • 17