首页|锂离子电池正极材料的表界面改性策略

锂离子电池正极材料的表界面改性策略

扫码查看
提升锂离子电池能量密度的最有效途径是提升正极材料的工作电压或采用高比容量电极材料.能量密度的提升意味着更高比例的活性锂从正极材料的晶格中脱出与嵌入.高温高荷电态时,高比例活性锂的脱出将诱发析氧、过渡金属溶出、电极/电解液界面副反应、阳离子跨层迁移、表面重构等一系列"正极/电解液"界面问题,进而导致正极材料的失效及电池性能的恶化.本文概述了层状 LiMeO2(Me=Ni、Co、Mn、Al)、尖晶石型 LiMe2O4(Me=Ni、Mn)及橄榄石型 LiMePO4(Me=Fe、Mn)等三类常见正极材料的结构和表界面失效模式,以及表界面问题最新研究进展,分析了包覆、表层掺杂、梯度结构、颗粒形态调控、界面成膜添加剂在表界面改性方面的作用机理,总结了锂离子电池正极材料表界面关键共性问题及解决策略.
Surface and interface modification strategies of cathode materials for lithium-ion batteries
Increasing the operating voltage of the cathode materials or using high specific capacity electrode materials is the most effective way to improve the energy density of lithium-ion batteries(LIBs).The increase in energy density results in a significant extraction and embedded of active lithium from the lattice of the cathode materials,leading to a series of cathode/electrolyte interface problems such as oxygen evolution,transition metal dissolution,interface side reaction,cation cross-layer migration,surface structure reconstruction.These phenomena can cause failure of cathode materials and the deterioration of battery performance.In this paper,the structure and surface and interface failure modes of three conventional types of cathode materials are summarized,including layered LiMeO2(Me=Ni、Co、Mn、Al),spinel-type LiMe2O4(Me=Ni、Mn)and olivine-type LiMePO4(Me=Fe、Mn).The latest research progresses on surface and interface of cathode materials are reviewed,focusing on the mechanism of coating,surface doping,gradient structure,particle morphology control and electrolyte additives on surface and interface modification are discussed.Key common problems and resolution strategies of surface and interface of cathode materials in LIBs are summarized.

lithium-ion batteriescathode materialsurfaceinterfaceresearch progressmodification strategy

凌仕刚、刘亚飞、陈彦彬

展开 >

矿冶科技集团有限公司,北京 100160

北京当升材料科技股份有限公司,北京 100160

锂离子电池 正极材料 表面 界面 研究进展 改性策略

2024

矿冶
北京矿冶研究总院

矿冶

CSTPCD
影响因子:0.78
ISSN:1005-7854
年,卷(期):2024.33(6)