首页|表面Sn掺杂对富锂锰基材料电化学性能的影响

表面Sn掺杂对富锂锰基材料电化学性能的影响

扫码查看
为了满足电动汽车长途行驶对锂离子电池性能的需求,开发高能量密度的正极材料至关重要.富锂锰基氧化物(LRM)作为下一代锂电池正极材料,因能提供超过250 mA·h·g-1的高可逆容量,受到了广泛关注.其高容量源自氧阴离子与过渡金属阳离子在电荷补偿过程中的共同作用.然而,氧气释放、过渡金属离子迁移及表面重构现象导致的结构降解,极大地影响了材料的循环稳定性、电压衰退和倍率性能,限制了其商业化应用.大量研究表明,富锂锰基正极材料的性能衰退起源于材料的表面结构崩塌.鉴于此,本文采用大尺寸的Sn离子对材料表面进行改性,探索Sn掺杂对材料结构及电化学性能的影响.通过一系列表征技术分析发现,Sn成功掺入表面晶格,有效抑制了循环过程中过渡金属离子的不可逆迁移.同时,Sn诱导表面形成稳定的尖晶石相,显著提升了表面氧的稳定性及界面稳定性,从而大幅度提升了材料的电化学性能.在0.1 C下放电时,比容量可达310 mA·h·g-1;1C循环150次后,容量保持率为88%.该改性方法为提高富锂锰基正极材料的稳定性提供了有效途径.
Effect of surface Sn doping on the electrochemical performance of Li-rich Mn-based materials
To meet the performance demands of lithium-ion batteries for long-distance electric vehicle travel,it is crucial to develop high-energy-density cathode materials.Li-rich Mn-based oxides(LRM)have garnered widespread attention as next-generation cathode materials for lithium-ion batteries due to their high reversible capacity of over 250 mA·h·g-1.The high capacity of LRM arises from the combined effect of oxygen anions and transition metal cations during the charge compensation.However,the structural degradation caused by oxygen release,transition metal ion migration,and surface reconstruction,severely affecting the material's cycling stability,voltage decay,and rate capability,thus limiting its commercialization.Numerous studies have shown that the performance degradation of Li-rich Mn-based cathodes originates from the collapse of the surface structure.In this study,large-sized Sn ions were used to modify the surface of the material,exploring the impact of Sn doping on the material's structure and electrochemical performance.Characterization techniques reveals that Sn successfully incorporated into the surface lattice,effectively inhibiting the irreversible migration of transition metal ions during cycling.Additionally,Sn induces the formation of a stable spinel phase on the surface,significantly enhancing the stability of surface oxygen and the interface,thereby greatly improving the electrochemical performance of the material.When discharged at 0.1 C,the specific capacity reaches 310 mA·h·g-1;after 150 cycles at 1 C,the capacity retention is 88%.This modification method provides an effective approach to improving the stability of lithium-rich manganese-based cathode materials.

lithium-ion batteriesLi-rich Mn-based cathode materialssurface Sn dopingcapacity retentionvoltage decay

杨亚丽、刘亚飞、王俊、张学全

展开 >

矿冶科技集团有限公司,北京 100160

北京当升材料科技股份有限公司,北京 100160

锂离子电池 富锂锰基正极材料 表面Sn掺杂 容量保持率 电压衰退

2024

矿冶
北京矿冶研究总院

矿冶

CSTPCD
影响因子:0.78
ISSN:1005-7854
年,卷(期):2024.33(6)