首页|用于高效氧还原反应的铂镨合金电催化剂

用于高效氧还原反应的铂镨合金电催化剂

扫码查看
质子交换膜燃料电池(PEMFC)因高效、零排放的优势成为应对能源与气候挑战、推动氢能经济的关键技术.但阴极氧气还原反应(ORR)动力学缓慢限制了其大规模应用.高性能、低铂用量的先进电催化剂的设计与开发,对于改善阴极三相界面区域的氧气吸附、电子转移和传质,降低氧还原反应的动力学能垒,提升质子交换膜燃料电池的效率至关重要.本文提供了一种新的范例开发兼具高活性和稳定性的ORR催化剂,即借助稀土元素镨对铂进行调控,利用具有独特电子构型和较低电负性的镨与铂合金化产生的配体效应调控微观电子结构,改善活性位点局域电子构型和本征活性.本文采用简单的多元醇热还原法成功制备了碳载铂镨二元合金(PtPr/C)催化剂.在三电极体系ORR性能测试中,PtPr/C半波电位达0.92 V,比Pt/C高出20 mV,质量活性为商业Pt/C的4倍;在10 000圈加速耐久性测试后,PtPr/C半波电位仅降13 mV,表现出比Pt/C更优异的稳定性.在氢氧质子交换膜燃料电池测试中,以PtPr/C为阴极催化剂的单电池峰值功率密度达1.92 W·cm-2,质量活性为0.28 A·mgPt-1,远超装配商业Pt/C的单电池.XPS和DFT计算表明Pr诱导合金表面电子重构,配体效应调谐了 Pt电子结构,降低d带中心,优化了催化过程中含氧中间体在三相界面的吸附/解吸行为,从而促进ORR动力学过程.这项工作为高效低铂电催化剂的开发提供了参考.
Platinum praseodymium alloy electrocatalyst for efficient oxygen reduction reaction
Proton exchange membrane fuel cells(PEMFCs)have become a key technology for addressing energy and climate challenges and promoting the hydrogen economy,driven by their high efficiency and zero emissions.However,the sluggish kinetics of the cathodic oxygen reduction reaction(ORR)limit their large-scale application.The design and development of advanced electrocatalysts with high performance and low platinum usage are crucial for improving oxygen adsorption,electron transfer,and mass transport in the cathode three-phase interface region,reducing the kinetic barriers of ORR,and enhancing the efficiency of PEMFCs.Herein,a new paradigm for the development of ORR catalysts with both high activity and stability is presented by leveraging the rare earth element praseodymium(Pr)to modulate platinum(Pt).The unique electronic configuration and lower electronegativity of Pr,when alloyed with Pt,induce a ligand effect that adjusts the microelectronic structure,improving the local electronic configuration of active sites and intrinsic activity.A carbon-supported PtPr binary alloy catalyst(PtPr/C)was successfully synthesized via a simple polyol thermal reduction method.In three-electrode system ORR performance tests,PtPr/C exhibits a half-wave potential of 0.92 V,20 mV higher than Pt/C,with a mass activity four times that of commercial Pt/C.After 10 000 cycles in accelerated durability testing,PtPr/C shows only a 13 mV decrease in half-wave potential,demonstrating superior stability compared to Pt/C.In PEMFC tests,a single cell with PtPr/C as the cathode catalyst achieves a peak power density of 1.92 W·cm-2 and a mass activity of 0.28 A·mg-1Pt,significantly outperforming the cell with commercial Pt/C.XPS and DFT calculations reveal that Pr induces surface electronic reconstruction in the alloy,and the ligand effect tunes the Pt electronic structure by lowering the d-band center.The adsorption/desorption behavior of oxygen-containing intermediates at the three-phase interface has been optimized,thereby promoting the ORR kinetics.This work provides a valuable reference for the development of efficient low-platinum electrocatalysts.

fuel cellsoxygen reduction reactionplatinum-based alloysligand effectadsorption/desorption

金纯、董子豪、刘亚飞

展开 >

矿冶科技集团有限公司,北京 100160

北京当升材料科技股份有限公司,北京 100160

燃料电池 氧还原反应 铂基合金 配体效应 吸附/解吸

2024

矿冶
北京矿冶研究总院

矿冶

CSTPCD
影响因子:0.78
ISSN:1005-7854
年,卷(期):2024.33(6)