首页|非酒精性脂肪性肝病发病的预测研究——基于前瞻性队列

非酒精性脂肪性肝病发病的预测研究——基于前瞻性队列

扫码查看
目的 识别非酒精性脂肪性肝病发病的影响因素,并建立其发病风险的预测模型.方法 22 702例受试者按7∶3被随机分配到训练集(n=15 892)和验证集(n=6 810).采用Lasso-Cox回归构建预测非酒精性脂肪性肝病发病的列线图.采用受试者操作特征曲线下面积评估模型的区分度.结果 体重指数、高血压、糖尿病、高尿酸血症、丙氨酸转氨酶、甘油三酯对非酒精性脂肪性肝病发病的影响有统计学意义并构建列线图.在训练集中,2、3、4年曲线下面积分别为0.72、0.73、0.73.在验证集中,2、3、4年曲线下面积分别为0.72、0.74、0.76.结论 本研究建立的列线图模型对4年内非酒精性脂肪性肝病的发病率具有较好的预测价值.
Prediction of the incidence of nonalcoholic fatty liver disease:A prospective cohort study
Objective To identify risk factors with the onset of nonalcoholic fatty liver disease and develop a prediction model for its incidence.Methods 22 702 participants were randomly assigned to the training and the validation set at 70%(n =15 892)and 30%(n = 6 810).A nomogram model for nonalcoholic fatty liver disease was constructed using Lasso-Cox regression.The area under the receiver operator characteristic curve(AUC)was used to assess model discriminability.Results body mass index,hypertension,diabetes mellitus,hyperuricemia,alanine aminotransferase and triglycerides were statistically significant for the onset of nonal-coholic fatty liver disease and were used to construct the nomogram.In the training set,AUC was 0.72,0.73 and 0.73 at 2,3,4 years,respectively.In the validation set,AUC was 0.72,0.74 and 0.76 at 2,3,4 years,re-spectively.Conclusions The nomogram had a good predictive value for the incidence of nonalcoholic fatty liv-er disease within 4 years.

nonalcoholic fatty liver diseaseincidencepredictive modelnomogramprospective cohort

巫元琴、刘艳艳、程治远、尹春、张蔚、李娜、华宏昊、吴喜江、王玉峰、龙现珍、丁姣、史典、任晓宇、张德生、白亚娜、程宁

展开 >

兰州大学公共卫生学院 流行病学与统计研究所,甘肃 兰州 730000

南方科技大学公共卫生与应急管理学院,广东 深圳 518055

金川集团有限公司职工医院,甘肃 金昌 737100

兰州大学 基础医学院,甘肃 兰州 730000

展开 >

非酒精性脂肪性肝病 发病率 预测模型 列线图 前瞻性队列

金川集团公司职工代谢性疾病全程管理体系建设项目

金科综2020-02

2024

兰州大学学报(医学版)
兰州大学

兰州大学学报(医学版)

CSTPCD
影响因子:0.641
ISSN:1000-2812
年,卷(期):2024.50(1)
  • 17