首页|基于不同卷积神经网络构建小肠多病变自动检测的人工智能辅助系统

基于不同卷积神经网络构建小肠多病变自动检测的人工智能辅助系统

扫码查看
目的 基于不同卷积神经网络开发人工智能辅助系统,用于自动检测小肠胶囊内镜(CE)拍摄的11类小肠病变图像,提高诊断的效率、准确性和客观性。方法 收集来自3个不同医学中心,使用3种不同品牌设备拍摄的CE图像,构建图像数据集,用于不同卷积神经网络模型的训练和测试,共含13 683张图像和15 117个注释标签。模型性能评估指标包括平均精度、准确率、敏感性、特异性、假阳性率、检测速度。结果 构建了2种YOLO模型和2种RTMDet模型,在包含2 729张CE图像(4 801注释标签)的测试集上,RTMDet_m模型取得了最佳的mAP50(82。58%),但也展现出最慢的延迟时间(47。28帧/s)。模型达到了82。76%的整体敏感性和95。91%整体准确率;在具体类别的推理中,敏感性最高的类别是"出血",而最低的类别是"黏膜下肿瘤"。结论 使用混合品牌CE图像开发的人工智能模型能够快速准确地检测与分类11种小肠病变,在帮助医师提升CE诊断效率和准确性方面展现出很好的临床应用潜力。
Construction of an artificial intelligence-assisted system for auto-matic detection of multiple lesions in the small intestine based on various convolutional neural networks
Objective To develop an artificial intelligence-assisted system based on various convolutional neural networks for automatically detecting 11 types of small intestinal lesion images captured by capsule endoscopy(CE),aiming to enhance the efficiency,accuracy,and objectivity of diagnoses.Methods Images were collected from three medical centers across different countries using three different brands of CE equip-ment,building an image dataset for training and testing various convolutional neural network models,totaling 13 683 images and 15 117 annotated labels.The model performance metrics included mean precision,accuracy,sensitivity,specificity,false-positive rate,and detection speed.Results Two YOLO models and two RTMDet models were developed in this study.In a test set containing 2 729 CE images(4 801 annotated labels),the RTMDet_m model achieved the best mAP50(82.58%),but also showed the slowest latency at 47.28 frames per second.Additionally,this model achieved an overall sensitivity of 82.76%and an accuracy of 95.91%;in category-specific inference,the highest sensitivity was observed in the"bleeding"category,while the lowest was for"submucosal tumor".Conclusion The artificial intelligence models developed using mixed-brand CE images can rapidly and accurately detect and classify 11 types of small intestinal lesions,demonstrat-ing significant clinical application potentials in enhancing the efficiency and accuracy of CE diagnoses.

small intestinal lesionsconvolutional neural networkartificial intelligencecapsule endoscopyobject detection

陈健、王甘红、张子豪、夏开建、戴建军、徐晓丹

展开 >

常熟市第一人民医院 消化内科,江苏 苏州 215500

常熟市中医院 消化内科,江苏 苏州 215500

上海豪兄教育科技有限公司,上海 200434

常熟市医学人工智能与大数据重点实验室,江苏 苏州 215500

展开 >

小肠病变 卷积神经网络 人工智能 胶囊内镜 目标检测

苏州市第二十三批科技发展计划资助项目常熟市医学人工智能与大数据重点实验室能力提升资助项目常熟市医药卫生科技计划资助项目

SLT2023006CYZ202301CSWS202316

2024

兰州大学学报(医学版)
兰州大学

兰州大学学报(医学版)

CSTPCD
影响因子:0.641
ISSN:1000-2812
年,卷(期):2024.50(9)