首页|基于非酒精性脂肪性肝病超声图像的预训练神经网络分类算法

基于非酒精性脂肪性肝病超声图像的预训练神经网络分类算法

Pre-trained neural network classification algorithm based on ultrasound images of non-alcoholic fatty liver disease

扫码查看
超声检查因其无创性已成为诊断非酒精性脂肪性肝病(NAFLD)的首选方法,计算机辅助诊断技术的引入可以帮助医师减少在NAFLD检测和分类的偏差.为此,本研究提出了一种将结合注意力机制的预训练VGG16网络与Stacking集成学习模型相结合的混合模型,集合了基于自注意力机制的多尺度特征聚合和基于Stacking集成学习模型多分类模型(逻辑回归、随机森林、支持向量机)融合的特性,实现基于肝脏超声图像的正常肝脏、轻度脂肪肝、中度脂肪肝、重度脂肪肝的4分类,准确度为91.34%,略优于传统神经网络算法(≤89.41%).结果显示,相较于预训练VGG16网络,引入自注意力机制使得准确度提高了3.02%,使用Stacking集成学习模型作为分类器进一步将准确度提高到91.34%,超过了逻辑森林回归(89.86%)、支持向量机(90.34%)、随机森林(90.73%)等单一分类器.该方法能有效提升NAFLD超声图像检测的效率和准确性.
Ultrasound examination has become the preferred choice for diagnosing non-alcoholic fatty liver disease(NAFLD)due to its non-invasive.Computer-aided diagnosis technology can help doctors avoiding deviations of detection and classification in NAFLD.Therefore,this study propose a hybrid model that makes the pre-trained VGG16 network combined with the attention mechanism and the Stacking ensemble learning model,which has ability of multi-scale feature aggregation based on the self-attention mechanism and multi-classification model fusion(Logistic regression,random forest,support vector machine)based on Stacking ensemble learning.The proposed hybrid method achieves four classifications of normal,mild,moderate,and severe fatty liver based on ultrasound images,and it reaches an accuracy of 91.34%,which is slightly better than traditional neural network algorithms(≤89.41%).The results show that compared with the pre-trained VGG16 network,adding the self-attention mechanism improves the accuracy by 3.02%.Using the Stacking ensemble learning model as a classifier further increases the accuracy to 91.34%,exceeding any one single classifier such as Logistic regression(89.86%),support vector machine(90.34%)and random forest(90.73%).The proposed hybrid method can effectively improve the efficiency and accuracy of NAFLD ultrasound image detection.

Ultrasound imageNon-alcoholic fatty liver diseaseVGGSelf-attentionEnsemble learning

郭丽娟、王文娟、王晓童、史莉玲

展开 >

030013 太原市,山西省儿童医院山西省妇幼保健院超声科

山西国际旅行卫生保健中心

超声图像 非酒精性脂肪性肝病 VGG 自注意力 集成学习

山西省基础研究计划(自由探索类)项目山西省高等学校科技创新计划项目

202103021244332023L112

2024

临床超声医学杂志
重庆医科大学第二临床学院,重庆医科大学附属第二医院

临床超声医学杂志

CSTPCD
影响因子:0.845
ISSN:1008-6978
年,卷(期):2024.26(8)
  • 5