首页|NaOH协同Ni辅助咖啡渣热解联产氢气和高性能碳纳米片

NaOH协同Ni辅助咖啡渣热解联产氢气和高性能碳纳米片

扫码查看
以咖啡渣为原料,提出了一种NaOH协同Ni辅助咖啡渣热解联产氢气和高性能碳纳米片电极材料的新型生物质转化方法。考察了不同条件对气体组成和气体产率的影响,采用SEM、TEM、EDS、XRD、拉曼光谱和N2吸附/脱附等温线对碳材料的结构进行表征,并测试了其电化学性能。结果表明:当NaOH和咖啡渣质量比值为2、Ni纳米颗粒添加量为咖啡渣质量的10%、反应温度为550℃时,可获得最高氢气产率,为31。79 mmol/g,此时氢气占气体产物的84。46%,此条件下制备的碳材料标记为2-0。1-550。当反应温度达到600 ℃时,热解炭样品2-0。1-600呈多孔碳纳米片结构,比表面积高达3 123 m2/g、总孔容为1。808 cm3/g、微孔孔容为1。052 cm3/g,具有合理的孔隙结构和适当的石墨化程度;用作电极材料在三电极体系中获得了 215 F/g(1 A/g)的高比电容。进一步通过超快充电/放电动力学明晰了快速、慢速动力学过程的电容贡献率,通过Dunn方法计算发现:当扫描速率由5 mV/s增加到100mV/s时,快速反应动力学过程的电容贡献率由64。34%提高至96。50%。此外,在6 mol/L KOH电解液中组装的对称电极,在功率密度3 860。9 W/kg时能量密度仍达到5。6 W·h/kg;循环伏安(CV)、恒流充放电(GCD)和电化学阻抗谱(EIS)测试表明:碳材料2-0。1-600具有理想的双电层电容(EDLC)行为和高效的离子传输速率,在1 A/g的电流密度下比电容高达170 F/g,即使电流密度提高至10 A/g时,电容保持率仍达94。1%(160 F/g);在5 A/g的电流密度下循环10 000次电容保持率为103%,库仑效率仍为100%,表明了其优异的稳定性。
NaOH and Ni-assisted Pyrolysis of Coffee Grounds for the Co-production of Hydrogen and High-performance Carbon Nanosheets
A novel biomass conversion method of NaOH and Ni-assisted pyrolysis of coffee grounds for cogeneration of hydrogen and high-performance carbon nanosheet electrode materials was proposed.The effects of different conditions on the gas composition and gas yield were investigated.The structure of the carbon materials was characterized by SEM,TEM,EDS,XRD,Raman spectroscopy and N2 adsorption/desorption isotherms,and their electrochemical performance was tested.The results showed that when the mass ratio of NaOH to coffee grounds was 2,the amount of Ni nanoparticles added was 10%of the mass of coffee grounds,and the reaction temperature was 550 ℃,the highest hydrogen yield of 31.79 mmol/g was achieved,accounting for 84.46%of the gas products.Under this condition,the prepared carbon material was labeled 2-0.1-550.When the reaction temperature reached 600 ℃,the pyrolytic carbon sample 2-0.1-600 showed a porous carbon nanosheet structure with a specific surface area of 3 123 m2/g,a total pore volume of 1.808 cm3/g,and a micropore volume of 1.052 cm3/g,demonstarting a reasonable pore structure and appropriate degree of graphitization.The carbon material was used as an electrode material to obtain a high specific capacitance of 215 F/g(1 A/g)in the three-electrode system.The capacitive contribution rate of the fast and slow kinetic processes was further clarified by ultrafast charging/discharging kinetics.It was found by Dunn method that when the scan rate increased from 5 mV/s to 100 mV/s,the capacitance contribution from the fast reaction kinetics process increased from 64.34%to 96.50%.Furthermore,the symmetric electrode assembled in a 6 mol/L KOH solution electrolyte still achieved an energy density of 5.6 W·h/kg at a power density of 3 860.9 W/kg.Cyclic voltammetry(CV),galvanostatic charge-discharge(GCD),and electrochemical impedance spectroscopy(EIS)tests indicated that the material 2-0.1-600 exhibited ideal electrical double layer capacitor(EDLC)behavior and high ion transport efficiency,with a specific capacitance of 170 F/g at a current density of 1 A/g.Even when the current density increased to 10 A/g,a capacitor retention was still 94.1%(160 F/g).After 10 000 cycles at a current density of 5 A/g,the capacitance retention rate was 103%and the coulombic efficiency remained at 100%,indicating its excellent stability.

biomass pyrolysishydrogen productionco-productionporous carbon nanosheetssupercapacitors

何子健、张子杭、许丹、王树荣

展开 >

浙江大学能源高效清洁利用全国重点实验室,浙江 杭州 310027

南京林业大学化学工程学院,江苏南京 210037

生物质热解 制氢 联产 多孔碳纳米片 超级电容器

国家自然科学基金国际合作与交流项目

52261135626

2024

林产化学与工业
中国林业科学研究院林产化学工业研究所 中国林学会林产化学化工分会

林产化学与工业

CSTPCD北大核心
影响因子:0.696
ISSN:0253-2417
年,卷(期):2024.44(5)