首页|基于自噬基因的度洛西汀抗抑郁疗效预测模型的构建

基于自噬基因的度洛西汀抗抑郁疗效预测模型的构建

扫码查看
目的:通过生物信息学方法构建基于自噬基因的度洛西汀抗抑郁疗效预测模型.方法:在高通量基因表达数据库中下载GSE146446 数据集,该芯片包括96 例患者接受抗抑郁药物度洛西汀8 周的治疗,组织样本为全血样本,以度洛西汀治疗8 周后是否有效分组,筛选两组间的差异表达基因,与自噬基因集取交集.利用最小绝对值收敛和选择算法回归(LASSO)及Logistic回归构建疗效预测模型.结果:SPNS1、ITPR3 基因的表达水平均为度洛西汀抗抑郁疗效的影响因素(P均<0.05).LAS-SO-Logistic回归模型:Logit(P)=33.7846+(-2.8615×SPNS1 表达水平)+(-1.7716×ITPR3 表达水平),其中Logit(P)=ln[P/(1-P)].结论:基于自噬相关基因(SPNS1、ITPR3)表达量的度洛西汀的抗抑郁疗效预测模型具有较好的区分度、校准度以及疗效预测效能,未来可能为抑郁症患者使用度洛西汀药物治疗提供更为科学可靠的证据.
A predictive model for antidepressant effect of duloxetine based on autophagy-related genes
Objective:This paper aims to construct a prediction model of the efficacy of antidepressant treatment with duloxetine based on autophagy by bioinformatics methods.Method:GSE146446 dataset was downloaded from gene expression omnibus database,including 96 patients with major depressive disorder(MDD)treated with antidepressant duloxetine for 8 weeks,and the tissue is whole blood.After an 8-week treat-ment,patients were divided into responders and non-responders.The differentially expressed genes(DEGs)be-tween the two groups were screened and intercrossed with the autophagy-related genes(ARGs)to find the key genes.The predictive model for antidepressant effect were established using least absolute shrinkage and selec-tion operator(LASSO)and Logistic regression.Results:The expressions of two autophagy-related genes(SPNS1,ITPR3)were related to the efficacy of antidepressant treatment with duloxetine(all P<0.05).LAS-SO-Logistic regression prediction model:Logit(P)= 33.7846+(-2.8615×the expression of SPNS1)+(-1.7716×the expression of ITPR3),and Logit(P)=ln[P/(1-P)].Conclusion:The predictive model for antidepressant effect of duloxetine based on two autophagy-related genes(SPNS1,ITPR3)can predict the treatment efficacy of duloxetine.The model has a good differentiation,calibration and efficacy,which may guide clinical medication of duloxetine in MDD in the future.

major depressive disorderautophagyautophagy-related genespredictive modelleast absolute shrinkage and selection operator-Logistic regression

李偲媛、魏宇梅、和申、曾端、李华芳

展开 >

200030 上海交通大学医学院附属精神卫生中心精神科

抑郁症 自噬 自噬相关基因 预测模型 最小绝对值收敛和选择算法回归-Lo-gistic回归模型

上海市精神心理疾病临床医学研究中心项目上海市精神卫生中心院级重点课题&&上海申康医院发展中心医企融合创新支撑技能培训专项上海市科委生物医药领域科技支撑计划

19MC19111002022zd02SHDC2020CR2053BSHDC2022CRS03222S21902300

2024

临床精神医学杂志
南京医科大学附属脑科医院

临床精神医学杂志

CSTPCD
影响因子:1.108
ISSN:1005-3220
年,卷(期):2024.34(2)
  • 13