首页|基于多维度临床数据的肺炎AI病原学类型判别模型

基于多维度临床数据的肺炎AI病原学类型判别模型

扫码查看
目的:基于肺炎患者的临床资料,建立肺炎人工智能(artificial intelligence,AI)病原学类型判别模型,预测肺炎的责任病原体,帮助临床医生选择合适的抗感染治疗方案.方法:回顾性地收集了北京天坛医院急诊科与呼吸科在2018年1月-2020年12月收治的197例肺炎患者的临床资料.选取158例(80%)患者资料作为建模组,构建肺炎AI病原学类型判别模型,39例(20%)作为验证组,验证模型的预测效果.同时,将验证组预测结果与20名急诊科医师的病原学诊断结果进行对比.结果:基于多维度临床数据构建的肺炎AI病原学类型判别模型的病原学验证精度为94.87%.20名急诊科医师病原学诊断的准确率分别为7.69%、15.38%、10.26%、10.26%、15.38%、17.95%、12.82%、10.26%、25.64%、17.95%、7.69%、5.13%、12.80%、20.51%、17.95%、7.69%、28.21%、12.82%、23.08%、15.38%,该模型的验证精度高于临床医师病原学诊断的平均准确率(94.87%vs 14.74%).结论:借助既往肺炎患者的临床资料,本研究创建了基于多维度临床数据的肺炎AI病原学类型判别模型,该模型可用于早期预测肺炎患者的责任病原体,为临床医生早期制定经验性抗感染治疗方案提供参考.受限于样本量,本模型的临床价值有待进一步研究.
AI pathogen type discrimination model for pneumonia based on multi-dimensional clinical data etiology
Objective:To establish an artificial intelligence(AI)model for pathogen discrimination in pneumo-nia patients using their medical records.The model aims to predict the causative pathogens of pneumonia and as-sist clinical physicians in selecting appropriate antimicrobial treatment strategies.Methods:Retrospective medical records of 197 pneumonia patients admitted to the Emergency and Respiratory Departments of Beijing Tiantan Hospital from January 2018 to December 2020 were collected.Among these,data from 158 patients(80%)were selected to build the pneumonia AI pathogen discrimination model,while data from 39 patients(20%)were used for model validation.The predictive results of the validation group were also compared with the pathogen diagno-ses made by twenty emergency department physicians.Results:The AI pathogen discrimination model,based on multi-dimensional clinical data,achieved a pathogen validation accuracy of 94.87%.In contrast,the accuracy of pathogen diagnosis by the twenty emergency department physicians ranged from 5.13%to 28.21%,with an aver-age accuracy of 14.74%.Therefore,the model's validation accuracy outperformed the average accuracy of clinical physician pathogen diagnoses(94.87%vs 14.74%).Conclusion:By utilizing historical medical records of pneu-monia patients,this study successfully developed an AI pathogen discrimination model based on multi-dimensional clinical data.The model shows promise in early prediction of pneumonia pathogens and provides valuable refer-ences for clinical physicians in selecting empirical antimicrobial treatment strategies.However,due to limitations in sample size,further research is warranted to explore the full clinical potential of this model.

pneumoniamulti-dimensional clinical dataaetiologyartificial intelligence

王霞、赵玮、陈征、刘京铭、康波、郭伟

展开 >

首都医科大学附属北京天坛医院急诊科(北京,100070)

国家超级计算天津中心

首都医科大学附属北京中医医院急诊科

肺炎 多维度临床数据 病原学 人工智能

2024

临床急诊杂志
华中科技大学同济医学院

临床急诊杂志

CSTPCD
影响因子:0.652
ISSN:1009-5918
年,卷(期):2024.25(7)