首页|基于DQN和功率分配的FDA-MIMO雷达抗扫频干扰

基于DQN和功率分配的FDA-MIMO雷达抗扫频干扰

扫码查看
频率分集阵列(Frequency Diversity Array,FDA)雷达由于其阵列元件的频率增量产生了许多新的特性,包括其可以通过发射功率分配进行灵活的发射波形频谱控制.在以扫频干扰为电磁干扰环境的假设下,首先,通过引入强化学习的框架,建立了频率分集阵列-多输入多输出(Frequency Diversity Array-Multiple Input Multiple Output,FDA-MIMO)雷达与电磁干扰环境交互模型,使得FDA-MIMO雷达能够在与电磁环境交互过程中,感知干扰抑制干扰.其次,本文提出了一种基于深度Q网络(Deep Q-Network,DQN)和FDA-MIMO雷达发射功率分配的扫频干扰抑制方法,使得雷达系统能够在充分利用频谱资源的情况下最大化SINR.最后,仿真结果证实,在强化学习框架下,FDA-MIMO雷达能够通过对发射功率分配进行优化,完成干扰抑制,提升雷达性能.
Anti-Sweep Interference of FDA-MIMO Radar Based on DQN and Power Allocation
The frequency diversity array(FDA)radar has many new characteristics due to the frequency incre-ment of its array elements,including the flexible spectrum control of the transmitted waveform through the transmission power allocation.Aiming at the problem of suppression of radar performance by sweep interference,firstly,the interac-tion model between frequency diversity array-MIMO(FDA-MIMO)radar and electromagnetic interference environment is established by introducing a reinforcement learning framework,so that FDA-MIMO radar can sense interference and suppress interference in the interaction process with electromagnetic environment.Secondly,a sweep interference sup-pression method based on deep Q-network(DQN)and FDA-MIMO radar transmission power allocation is proposed,so that the radar system can maximize SINR while making full use of spectrum resources.The simulation results confirm that under the framework of reinforcement learning,FDA-MIMO radar can achieve interference suppression and improve radar performance by power allocation.

frequency diversity array(FDA)sweep interferencereinforcement learningdeep Q-network(DQN)power allocation

周长霖、王春阳、宫健、谭铭、包磊、刘明杰

展开 >

空军工程大学防空反导学院,陕西西安 710051

国防科技大学信息通信学院,湖北武汉 430010

国防科技大学试验训练基地,陕西西安 710106

频率分集阵列 扫频干扰 强化学习 深度Q网络 功率分配

国家自然科学基金陕西省自然科学基金

622015802021JM-222

2024

雷达科学与技术
中国电子科技集团公司第38研究所 中国电子学会无线电定位技术分会

雷达科学与技术

CSTPCD北大核心
影响因子:0.665
ISSN:1672-2337
年,卷(期):2024.22(2)
  • 20