首页|基于多尺度注意力机制ResNet的雷达工作模式识别

基于多尺度注意力机制ResNet的雷达工作模式识别

扫码查看
雷达工作模式识别是解释雷达行为和功能的基本任务.现有方法难以在信号灵活、环境复杂的条件下筛除脉冲序列中不同空间和不同通道中的冗余信息.本文在深度残差网络的基础上,增加了空间自注意力模块和通道自注意力模块以适应上述信号特点.模型引入自注意力机制以实现雷达序列不同空间和通道的自适应权值分配,使网络能更有效地关注更具差异性的信息,实现了极端条件下雷达工作模式的高精度识别.同经典深度学习网络AlexNet、LeNet、VGGNet、ResNet以及常规深度卷积网络相比,该模型在0~50%漏脉冲条件下,平均识别率提升了36%,在独立测试集40%漏脉冲比例下模型仍然具备90%以上的识别率,证明了所提网络的优越性和有效性.
Radar Working Mode Recognition Based on Multi-Scale Attention Mechanism ResNet
Mode recognition is a basic task to interpret radar behavior and function.Under the condition of flexi-ble signal and complex environment,the existing methods are difficult to screen out the redundant information in differ-ent spaces and channels in the pulse sequence.In this paper,based on the deep residual network,a spatial self-attention module and a channel self-attention module are added to adapt to the above signal characteristics.The self-attention mechanism is introduced in the model to realize the adaptive weight allocation of different spaces and channels of radar sequence,so that the network can focus on more diverse information more efficiently.The high precision recognition of radar working mode is realized under extreme conditions.Compared with classical deep learning networks such as AlexNet,LeNet,VGGNet,ResNet and conventional deep convolutional networks,the average recognition rate of this model is improved by 36%under the condition of 0~50%leakage pulses.In the independent test set,the model still has a recognition rate of more than 90%under the 40%leakage pulse.The advantages and effectiveness of the proposed net-work are proved.

multifunctional radarmode recognitionself-attention mechanismfeature extractiondeep learning

卓奕弘、熊敬伟、潘继飞、郭林青

展开 >

国防科技大学电子对抗学院,安徽合肥 230037

多功能雷达 模式识别 自注意力机制 特征提取 深度学习

2024

雷达科学与技术
中国电子科技集团公司第38研究所 中国电子学会无线电定位技术分会

雷达科学与技术

CSTPCD北大核心
影响因子:0.665
ISSN:1672-2337
年,卷(期):2024.22(2)
  • 31