首页|基于参数解耦的变分贝叶斯自适应卡尔曼滤波

基于参数解耦的变分贝叶斯自适应卡尔曼滤波

扫码查看
针对噪声协方差矩阵失配情况下的状态估计问题,本文基于变分贝叶斯框架,提出了一种适用于过程噪声协方差矩阵和测量噪声协方差矩阵均未知条件下的参数解耦的变分贝叶斯自适应卡尔曼滤波算法.所提算法选取预测误差协方差矩阵作为变分优化变量,并引入了其马尔可夫演化模型,构造了参数解耦的变分推断模型.同时,采用固定点迭代优化实现状态、预测误差协方差矩阵和测量噪声协方差矩阵的联合后验概率分布求解,并设计了算法的收敛性判断准则.仿真结果验证了算法的有效性.
Variational Bayesian Adaptive Kalman Filtering Algorithm Based on Parameter Decoupling Method
In the context of state estimation problems under mismatched noise covariance matrices,a parameter-decoupled variational Bayesian adaptive Kalman filter(PD-VB-AKF)algorithm is proposed in the paper within the framework of variational Bayesian(VB)method.The filter can be applicable when both the process noise covariance matrix(PNCM)and the measurement noise covariance matrix(MNCM)are unknown.The proposed algorithm chooses the predicted error covariance matrix(PECM)as the variable to optimize through variational techniques and introduces a Markov evolution model to construct the parameter-decoupled variational inference model.Furthermore,it utilizes the fixed-point iteration optimization to solve the joint posterior probability distribution of the state,PECM and MNCM,and outlines the convergence criteria of the algorithm.The simulation results validate the effectiveness of proposed algorithm.

adaptive state estimationKalman filteringvariational Bayesiannoise covariance matricesparame-ter decoupling

许红、刘欣蕊、邢逸舟、全英汇

展开 >

西安电子科技大学杭州研究院,浙江杭州 311231

西安电子科技大学电子工程学院,陕西西安 710071

自适应状态估计 卡尔曼滤波 变分贝叶斯 噪声协方差矩阵 参数解耦

国家自然科学基金中国博士后科学基金

623014082022M722503

2024

雷达科学与技术
中国电子科技集团公司第38研究所 中国电子学会无线电定位技术分会

雷达科学与技术

CSTPCD北大核心
影响因子:0.665
ISSN:1672-2337
年,卷(期):2024.22(3)
  • 20