首页|基于CFAR-CNN的轻量级海上目标检测

基于CFAR-CNN的轻量级海上目标检测

扫码查看
针对海防雷达分辨率低、实时性要求高及传统CFAR算法难以满足日益精细的现代化战争需求的问题.本文将传统的CA-CFAR算法融入到计算机视觉的两阶段目标检测框架中,形成了一种轻量、高效的雷达实时目标检测算法.首先使用低门限CFAR(Lo-CFAR)来判断诸多潜在目标的真实位置或虚警位置.然后,根据点迹位置信息和雷达回波距离-方位图做数据切片.最后,采用高性能分类器对数据切片进行训练.实测数值实验表明:与传统CFAR,Faster R-CNN算法相比,所提方法在提高检测概率、抑制虚警和轻量时效性方面有显著优势.
Light-Weighted Marine Radar Target Detection Based on CFAR-CNN
Aiming at the problems of low resolution and high real-time requirements of coastal defense radar and the difficulty of traditional CFAR algorithm to meet increasingly sophisticated requirements of modern war.In this paper,we incorporate traditional CA-CFAR algorithm into the two-stage target detection framework of computer vision to form a light-weighted and efficient radar target detection algorithm.Firstly,a low threshold CFAR(Lo-CFAR)algo-rithm is applied to indicate whether many positions of potential targets are real targets or false alarms.Then,the data slices are made on the radar echo range-azimuth map according to the position of spots.Finally,a high performance clas-sifier is applied to training data slices.The numerical experiments show that the proposed method has significant advan-tages in improving detection probability,suppressing false alarm and light-weighted timeliness compared with the tradi-tional CFAR and Faster R-CNN algorithm.

radar target detectiontwo-stagelight-weightedneural networksdata slice

刘世琦、匡华星、杨昊成

展开 >

中国船舶集团有限公司第七二四研究所,江苏南京 211153

东南大学,江苏南京 210096

雷达目标检测 二阶段 轻量化 神经网络 数据切片

2024

雷达科学与技术
中国电子科技集团公司第38研究所 中国电子学会无线电定位技术分会

雷达科学与技术

CSTPCD北大核心
影响因子:0.665
ISSN:1672-2337
年,卷(期):2024.22(3)
  • 17