首页|一种基于深度学习残差网络的模糊函数赋型方法

一种基于深度学习残差网络的模糊函数赋型方法

扫码查看
基于模糊函数(Ambiguity Function,AF)赋型的恒模波形设计是雷达系统中的一项关键技术.该问题可构造为一个非线性的复四次问题(NP-hard).现有的方法可分为两类:第一类方法通过松弛方式来求解该问题,但不可避免地会引入近似误差;第二类方法直接求解该问题,但该类方法的参数选取较为困难.我们注意到深度神经网络是一个天然的非线性系统,与上述的非线性问题模型高度契合.因此,本文提出了一种基于深度学习残差网络的方法来对AF赋型,该方法不需要松弛操作以及复杂的参数选取.具体步骤为:1)将该问题转化为一个无约束的相位优化问题;2)将该无约束问题的非凸目标函数构造为网络的损失函数;3)使用残差网络直接优化波形的相位.仿真结果表明,所提方法的信干比(Signal-to-Interference Ratio,SIR)有显著提升并且有着更好的目标探测性能.
An Ambiguity Function Shaping Method Based on Deep Learning Residual Network
Unimodular waveform design based on ambiguity function(AF)shaping is a crucial technique in radar systems.This problem is formulated as a nonlinear complex quartic optimization problem(NP-hard).The existing meth-ods can be classified into two categories:the first one solves the problem by relaxing the original problem,but inevitably introducing approximation errors;the second one solves the problem directly,but the selection of parameters in this cate-gory is difficult.We notice that deep neural network is a naturally nonlinear system that is highly compatible with that nonlinear problem.Motivated by this,this paper proposes a method based on deep learning residual network for AF shaping without any relaxation or complex parameters selection.The specific steps are as follows:1)The problem is transformed into an unconstrained phase optimization problem;2)The non-convex objective function of the uncon-strained problem is constructed as the loss function of the network;3)The residual network is used to directly optimize the phase of the waveform.The simulation results show that the signal-to-interference ratio(SIR)of the proposed method is improved significantly,and it has better target detection performance.

deep learningambiguity functionresidual networkconstant modulus constraintwaveform design

肖相青、王元恺、胡进峰、刘军、钟凯、赵紫薇、李会勇

展开 >

电子科技大学,四川 成都 611731

电子科技大学长三角研究院(衢州),浙江 衢州 324000

中国电子科技集团公司第四十一研究所,山东 青岛 266555

深度学习 模糊函数 残差网络 恒模约束 波形设计

2024

雷达科学与技术
中国电子科技集团公司第38研究所 中国电子学会无线电定位技术分会

雷达科学与技术

CSTPCD北大核心
影响因子:0.665
ISSN:1672-2337
年,卷(期):2024.22(6)