首页|基于深度学习的国产工业相机PCB缺陷检测算法

基于深度学习的国产工业相机PCB缺陷检测算法

扫码查看
针对PCB缺陷检测进口成套设备价格昂贵、闭源、不支持二次开发,面向国产工业相机的核心算法效率和准确度不佳的问题,提出一种基于深度学习的国产工业相机PCB缺陷检测算法。通过国产工业相机采集PCB训练样本集,利用K-means++聚类算法依据缺陷特征生成符合缺陷尺寸的先验框。在YOLOv3 深度学习算法的网络结构基础上,增加一个尺度为 104×104 的特征图层,进一步提取更多尺度的特征信息。通过多尺度特征的联合预测得到缺陷位置和类别。实验测试结果表明:所提出算法的平均精度均值达到 97。42%,优于同级别时间复杂度的SSD算法、YOLOv3算法和Faster RCNN算法,能够满足国产工业相机PCB缺陷检测的实际需求。
PCB defect detection algorithm for domestic industrial cameras based on deep learning
In response to the problem of printed circuit board(PCB)defect detection,which imported complete set of systems are expensive,closed-source,and unsupported secondary development,at same time,the efficiency and accuracy of the core detection algorithms for domestic industrial cameras hardware are poor,a PCB defect detection algorithm for domestic industrial cameras based on deep learning was proposed.Firstly,the PCB training sample set was collected by domestic industrial cameras,then generated an anchor box that meets the defect size according to the defect characteristics by the K-means++ algorithm.Secondly,a feature layer with a scale of 104×104 was added to extract more scale feature information based on the YOLOv3 network structure for deep learning algorithm.Finally,the defect location and category were obtained by the joint prediction of multi-scale features.The experimental results show that the mean Average Precision of the proposed algorithm is 97.42%,which better than SSD,YOLOv3 and Faster RCNN algorithm at same level of time cost,and can meet the actual needs of PCB defect detection for domestic industrial cameras.

domestic industrial cameraprinted circuit board defect detectionYOLOv3K-means++multi-scale features

陈万志、阴晓阳、方圆、房娜

展开 >

辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105

国产工业相机 PCB缺陷检测 YOLOv3 K-means++ 多尺度特征

国家重点研发计划国家级大学生创新创业训练计划

2018YFB1403303201710147312

2023

辽宁工程技术大学学报(自然科学版)
辽宁工程技术大学

辽宁工程技术大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.722
ISSN:1008-0562
年,卷(期):2023.42(6)
  • 5