首页|基于YOLOv8的鲁棒西红柿目标检测方法

基于YOLOv8的鲁棒西红柿目标检测方法

扫码查看
针对当前复杂环境下基于YOLO系列西红柿目标检测算法识别精确率不高、错检和漏检情况较多等问题,提出了一种基于YOLOv8单阶段西红柿目标检测识别方法.该方法以YOLOv8单阶段目标检测算法为主体,结合CSPDarknet结构改进、引入注意力机制、使用 自适应锚框和混合损失函数等,提高算法检测精确率和效率.实验结果表明,YOLOv8模型在复杂环境下依然能够高效、准确地识别西红柿目标,展现出良好的鲁棒性,为农业自动化中的目标检测提供了可靠的技术支持.
Robust tomato target detection method based on YOLOv8
Aiming at the problems of low recognition precision,many false detection and missed detection of tomato target detection algorithms based on the YOLO series in the current complex environment,a single-stage tomato target detection and recognition method based on YOLOv8 was proposed.This method takes the single-stage target detection algorithm of YOLOv8 as the main body,combined with the improvement of the CSPDark-net structure,the introduction of attention mechanism,the use of adaptive anchor boxes and mixed loss functions,etc,to improve the detection precision and efficiency of the algorithm.Experimental results show that the YOLOv8 model can still efficiently and accurately identify tomato targets in complex environment with good ro-bustness,which provides reliable technical support for target detection in agricultural automation.

tomatoYOLOv8CSPDarknet structureattention mechanismmixed loss function

姜庆玲

展开 >

铁岭师范高等专科学校理学院,辽宁铁岭 112000

西红柿 YOLOv8 CSPDarknet结构 注意力机制 混合损失函数

2024

辽宁师专学报(自然科学版)
辽宁省教育厅

辽宁师专学报(自然科学版)

影响因子:0.373
ISSN:1008-5688
年,卷(期):2024.26(3)