首页|机器学习在果蔬质量检测与控制中的应用

机器学习在果蔬质量检测与控制中的应用

扫码查看
机器学习(Machine Learning,ML)以其在食品质量控制与预测领域表现出的优越性及巨大潜力,被广泛应用于果蔬加工行业,以提高果蔬品质管理与评估预测的科学性与简便性.本文综述ML的基本原理与类别,并列举包括K邻近聚类算法、支持向量机、随机森林和卷积神经网络在内的常见ML方法,讨论ML在果蔬结构损伤检测、品质控制、品种分类和安全性检验中的应用,旨在为ML在果蔬品质检测与管理领域的应用提供参考.
Application of Machine Learning in Fruit and Vegetable Quality Inspection and Control
Machine Learning(ML)has shown its superiority and great potential in the field of food quality control and prediction,and is increasingly applied in the fruit and vegetable processing industry to improve the scientificity and simplicity of fruit and vegetable quality management,evaluation,and prediction.This article summarizes the basic principles and categories of ML,and lists common ML methods including K-nearest neighbor clustering algorithm,support vector machine,random forest,and convolutional neural network.It discusses the application of ML in fruit and vegetable structural damage detection,quality control,variety classification,and safety inspection,aiming to provide a reference for the application of ML in the field of fruit and vegetable quality detection and management.

machine learningfruit and vegetable testingquality managementquality and safetyvariety classification

陈尊旭

展开 >

仲恺农业工程学院 轻工食品学院,广东 广州 510000

机器学习 果蔬检测 品质管理 质量安全 品种分类

2024

现代食品
国家粮食储备局郑州科学研究设计院

现代食品

影响因子:0.169
ISSN:2096-5060
年,卷(期):2024.30(13)