首页|基于支持向量机数学模型的葡萄酒品质分类方法研究

基于支持向量机数学模型的葡萄酒品质分类方法研究

Research on the Wine Quality Classification Method Based on the Mathematical Model of Support Vector Machine

扫码查看
葡萄酒的化学成分是辨别其品种的关键依据,但常规检测方法复杂、繁琐且准确率低.在大数据时代,机器学习广泛应用于生活,支持向量机算法作为机器学习的重要算法之一,应用广泛且有效.因此,本研究采用机器学习的方法识别葡萄酒种类,阐述了支持向量机的原理和模型,以及核函数的应用和交叉验证法理论.结果表明,基于支持向量机的模型分类性能更佳,准确率达98.87%,有较好的全局收敛性,能克服K均值算法的缺点.
The chemical composition of wine is the key basis for recognizing its varieties,but the conventional testing methods are complicated,cumbersome and with low accuracy.In the era of big data,machine learning is widely used in life,and the support vector machine algorithm,as one of the important algorithms of machine learning,is widely used and effective.Therefore,this study adopts the machine learning method to recognize wine types,and describes the principle and model of support vector machine,as well as the application of kernel function and the theory of cross-validation method.The results show that the model based on support vector machine has better classification performance with 98.87%accuracy,better global convergence,and can overcome the shortcomings of K-mean algorithm.

support vector machinewine qualityK-mean algorithm

郭敏、尚朋辉

展开 >

西安思源学院基础部,陕西 西安 710038

西安职业技术学院,陕西 西安 710016

支持向量机 葡萄酒品质 K均值算法

2024

现代食品
国家粮食储备局郑州科学研究设计院

现代食品

影响因子:0.169
ISSN:2096-5060
年,卷(期):2024.30(20)