首页|食品中兽药残留多组分检测的集成分析技术研究与应用

食品中兽药残留多组分检测的集成分析技术研究与应用

Research and Application of Integrated Analytical Techniques for Multi-Component Detection of Veterinary Drug Residues in Foods

扫码查看
本研究针对食品中兽药残留多组分检测的难题,基于兽药残留的理化特性,提出科学的分组原则,并研究集成分析技术中的色谱-质谱联用方法,强调其在提高检测灵敏度和分离度方面的理论优势.在数据模型构建方面,利用多元数据处理技术优化分析模型,探讨了降维、噪声抑制和多元回归等方法对数据精度的影响,构建稳定的分析模型.在研究分析性能参数与模型优化策略时,从灵敏度、选择性和准确度等角度提升检测性能,提出基于机器学习的模型优化与预测方法.
This study addresses the challenge of multi-component detection of veterinary drug residues in food.Based on the physicochemical properties of veterinary drug residues,a scientific grouping principle is proposed,and the chromatography-mass spectrometry method in integrated analysis technology is studied,emphasizing its theoretical advantages in improving detection sensitivity and separation.In terms of data model construction,multiple data processing techniques were used to optimize the analysis model,exploring the impact of dimensionality reduction,noise suppression,and multiple regression methods on data accuracy,and constructing a stable analysis model.When studying the analysis of performance parameters and model optimization strategies,a machine learning based model optimization and prediction method is proposed to improve detection performance from the perspectives of sensitivity,selectivity,and accuracy.

veterinary drug residuesintegrated analysis technologydata modelgroup detection

梅贤儿

展开 >

华测检测认证集团股份有限公司,广东 深圳 518101

兽药残留 集成分析技术 数据模型 分组检测

2024

现代食品
国家粮食储备局郑州科学研究设计院

现代食品

影响因子:0.169
ISSN:2096-5060
年,卷(期):2024.30(20)