首页|基于改进YOLOv4的玉米秸秆颗粒机械堵塞故障检测

基于改进YOLOv4的玉米秸秆颗粒机械堵塞故障检测

扫码查看
针对传统玉米秸秆颗粒机械堵塞故障检测精度低,检测效率不高的问题,提出了一种基于改进YOLOv4网络的堵塞故障检测方法.首先,以YOLOv4网络作为基础 目标检测算法,基于YOLOv4网络引入混合注意力模块(Mixed Attention Module,MA),得到YOLOv4-MA网络,以增强小 目标通道和空间特征权重;然后将YOLOv4网络的损失函数替换为Focal-EIOU函数,以提升目标检测精度;最后将改进YOLOv4网络应用到玉米秸秆颗粒机械堵塞检测系统中.结果表明,该算法对不同秸秆颗粒检测的MAP值为98.51%,相较于传统SSD算法和Faster-RCNN算法分别高出了 16.33%和20.05%,且该算法对秸秆颗粒目标的检测时间仅为0.024 s,均低于另外两种模型.由此说明,该算法能够提升秸秆颗粒小 目标检测精度,提高秸秆颗粒机械堵塞故障检测效果,满足系统检测需求,具备实用性和有效性.
Detection of corn stalk granulator's blockage with modified YOLOv4
This study aimed to develop a new method based on modified YOLOv4 network for detecting blockage fault with corn stalk granulator machinery in view of low precision and efficiency of traditional method.First,with YOLOv4 network as a fundamental target detection algorithm,a Mixed Attention Module(MA)was introduced to develop a YOLOv4-MA network featuring strengthened weights on small-target channel and spatial characteristics.Then,loss function in YOLOv4 network was replaced with Focal-EIOU function to raise target detecting precision.Finally,the modified YOLOv4 network was applied to de-tecting blockage in corn stalk granulator.The results showed the algorithm's MAP value in detecting different stalk granules was 98.51%,which was 16.33%and 20.05%higher than the traditional SSD algorithm and Faster-RCNN algorithm,respec-tively.Furthermore,this algorithm took only 0.024 s in detecting the stalk granule target,faster than the other two models.It can be concluded that the algorithm can improve minute stalk granule detecting precision and stalk granulator blockage fault,and satisfy the system detection demand with high practicability and efficiency.

YOLOv4 networkstalk granulatormixed attention moduleblockage faultsmall target detection

吕超颖

展开 >

西安明德理工学院智能制造与控制技术学院,陕西西安 710124

YOLOv4网络 秸秆颗粒机械 混合注意力模块 堵塞故障 小目标检测

2024

粮食与饲料工业
国家粮食储备局 武汉科学研究设计院

粮食与饲料工业

CSTPCD
影响因子:0.513
ISSN:1003-6202
年,卷(期):2024.(6)