首页|基于MRI的Wilson病患者中脑病变发生风险列线图预测模型的建立与验证

基于MRI的Wilson病患者中脑病变发生风险列线图预测模型的建立与验证

Establishment and Validation of a Nomogram Predictive Model for the Risk of Brainstem Le-sions in Wilson's Disease Patients Based on MRI

扫码查看
目的 探究Wilson病(Wilson's disease,WD)发生中脑病变的影响因素,并构建WD中脑病变的预测模型,以便早期识别及干预.方法 对2019年4月至2023年4月在安徽中医药大学附属神经病学研究所就诊的198名脑型WD患者的临床和实验室数据进行了回顾性分析.所有患者均接受了颅脑磁共振成像(MRI)检查,并显示出不同程度颅脑MRI改变.采用LASSO回归及多因素Logistic回归分析筛选出影响中脑病变发生的因素,并构建列线图预测模型.采用受试者工作特征(ROC)曲线、校准曲线和临床决策曲线(DCA)验证预测模型的有效性.最后用1000次bootstrap及10折交叉验证对模型进行内部验证.结果 WD患者的年龄、MRI脑桥病变和丘脑病变为中脑病变的独立风险因素.列线图具有良好的区分度、校准度及临床实用性.经1000次bootstrap及10折交叉验证,模型区分度及校准度仍显示出良好的预测能力.结论 本研究中开发的列线图预测模型的预测及区分能力较好,可以帮助临床医生预测WD患者的中脑病变的发生,有一定的临床转化应用价值.
Objective To investigate the influencing factors of brain lesions in Wilson's dis-ease(WD)and to construct a predictive model for brain lesions in WD to facilitate early identifica-tion and intervention.Methods A retrospective analysis was conducted on the clinical and labora-tory data of 198 patients with neurological WD who were treated at the Neurology Institute affili-ated with Anhui University of Chinese Medicine from April 2019 to April 2023.All patients un-derwent cranial magnetic resonance imaging(MRI)and exhibited varying degrees of MRI changes in the brain.LASSO regression and multivariate Logistic regression analysis were used to identify factors influencing the occurrence of brain pathology and to construct a nomogram prediction model.The effectiveness of the predictive model was verified using the receiver operating charac-teristic(ROC)curve,calibration curve,and decision curve analysis(DCA).The model was inter-nally validated using 1000 bootstrap resamples and 10-fold cross-validation.Results The age of WD patients,and MRI findings of pontine and thalamic lesions were identified as independent risk factors for brain pathology.The nomogram demonstrated good discrimination,calibration,and clinical utility.After 1000 bootstrap resamples and 10-fold cross-validation,the model main-tained robust predictive performance.Conclusion The nomogram prediction model developed in this study has good predictive and discriminative capabilities,which can assist clinicians in predic-ting the occurrence of brainstem lesions in WD patients and has potential clinical translational ap-plication value.

Wilson's DiseaseMesencephalonNomogramPredictive Model

任昕莹、饶娆、汪世靖、朱凌、周浩、韩永升

展开 >

230038 合肥 安徽中医药大学神经病学研究所

安徽中医药大学神经病学研究所附属医院

皖南医学院

安徽中医药大学,新安医学与中医药现代化研究所

展开 >

Wilson病 中脑 列线图 预测模型

新安医学与中医药现代化研究所"揭榜挂帅"项目安徽省重点研究与开发计划项目安徽省自然科学基金项目安徽省高等学校自然科学研究重点项目

2023CXMMTCM002S2022042951070201352208085QH262KJ2021A0552

2024

立体定向和功能性神经外科杂志
安徽省脑立体定向神经外科研究所

立体定向和功能性神经外科杂志

CSTPCD
影响因子:0.488
ISSN:1008-2425
年,卷(期):2024.37(2)