首页|准周期激励Duffing系统中奇异非混沌吸引子的判别方法

准周期激励Duffing系统中奇异非混沌吸引子的判别方法

扫码查看
奇异非混沌动力学是非线性动力学领域中的新课题.本文以准周期激励Duffing振子为例,对其产生的奇异非混沌吸引子(strange nonchaotic attractors,SNAs)进行分析.通过三维庞加莱截面和定量方法如傅里叶变换、李雅普诺夫指数、李雅普诺夫维数、关联维数和盒维数检测SNAs是否存在.研究结果表明,傅里叶变换无法判断混沌与奇异非混沌行为.而李雅普诺夫指数、李雅普诺夫维数可以作为检测系统混沌与非混沌指标.关联维数和盒维数显著表明系统奇异与非奇异性,从而阐明适用于准周期驱动Duffing振子中存在SNAs的判别方法,并为其他类似系统检测SNAs提供指导.
METHODS FOR DISCRIMINATION OF STRANGE NONCHAOTIC ATTRACTORS IN QUASI-PERIODICALLY DRIVEN DUFFING OSCILLATOR
Strange nonchaotic dynamics is a new topic in the field of nonlinear dynamics.In this work,we take the quasi-periodically driven Duffing oscillator as an example to analyze the generation of strange nonchaotic attractors(SNAs).The existence of SNAs is investigated using three-dimensional Poincaré sections and quantitative methods such as Fourier transform,Lyapunov exponents,Lyapunov dimension,correlation dimension,and box dimension.The results indicate that Fourier transform is incapable of determining chaotic and strange nonchaotic behaviors.However,Lyapunov exponents and Lyapunov dimension can serve as indicators for detecting chaotic and nonchaotic behavior in the system.Correlation dimension and box dimension can clearly indicate the strangeness and nonstrangeness of the system,thus prove the existence of SNAs in the quasi-periodically driven Duffing oscillator and provide guidance for detecting SNAs in similar systems.

strange nonchaotic attractorsquasi periodically drivenLyapunov exponentcorrelation dimensionDuffing oscillator

秦波、张颖

展开 >

上海理工大学机械工程学院,上海 200093

海军军医大学第三附属医院(上海东方肝胆外科医院超)声介入科,上海 200438

同济大学医学院, 上海 200092

奇异非混沌吸引子 准周期激励 李雅普诺夫指数 关联维数 Duffing振子

研究生优秀学位论文培育基金

1021GK210006036-B20

2024

力学与实践
中国力学学会 中国科学院力学研究所

力学与实践

CSTPCD
影响因子:0.452
ISSN:1000-0879
年,卷(期):2024.46(2)
  • 26