首页|基于卷积循环神经网络的运动想象脑电信号模式识别

基于卷积循环神经网络的运动想象脑电信号模式识别

扫码查看
脑机接口技术可以帮助运动障碍人员通过外部设备与环境进行交互.为了提高对运动想象激发的脑电信号的识别率,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)的混合神经网络模式识别方法,并在实际计算中使用长短期记忆神经网络(Long Short-Term Memory,LSTM)和门控循环单元(Gated Recurrent Unit,GRU)两种不同的RNN进行对比.对原始脑电信号数据进行滤波和分段处理,将处理好的数据输入到混合神经网络中,使用Softmax进行分类,用BCI竞赛Ⅳ中的数据集 2a和数据集 1 两种脑电数据集进行验证,此方法能够有效地提高模式识别精度,平均准确率达到了95%以上.
Pattern Recognition of Motion Imagination EEG Signal Based on Convolutional Cyclic Neural Network
Brain-computer interface technology helps people with motor disorders interact with the environment through external devices.In order to improve the pattern recognition rate of EEG signals fuelled by motion imagination,a hybrid neural network pattern recogni-tion based on convolutional neural network(CNN)and recurrent neural network(RNN)is proposed,In the actual calculation,two different RNNs,Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU),are used for experimental comparison.Firstly,the original EEG data is filtered and segmented and the processed data are input into the hybrid neural network;Finally,Softmax is used for classification.Two EEG data sets,data set 2a and data set 1 in BCI competition Ⅳ,are used for experimental verification.The proposed methods can effectively improve the accuracy of pattern recognition,with an average accuracy more than 95%.

motor imaginationpattern recognitionRNNCNN

胡存林、叶晔

展开 >

安徽工业大学 机械工程学院,安徽 马鞍山 243002

运动想象 模式识别 循环神经网络 卷积神经网络

2024

洛阳理工学院学报(自然科学版)
洛阳理工学院

洛阳理工学院学报(自然科学版)

影响因子:0.229
ISSN:1674-5043
年,卷(期):2024.34(1)
  • 20