首页|基于显著图的鲁棒模型

基于显著图的鲁棒模型

扫码查看
人工智能安全中关于对抗样本的防御,鲁棒模型比非鲁棒模型的防御效果表现更好.利用对抗训练得到的鲁棒模型比非鲁棒模型对对抗样本具有更好的泛化性能,即鲁棒性更好,并且会显示出更多可解释的显著图.为更加深入地了解对抗训练的本质,通过显著图对鲁棒模型具有良好泛化性能的原因做出解释,鲁棒模型能够学习样本的显著特征,基于这类特征对输入样本做出决策.
Research on Robust Model Based on Saliency Map
Robust models have a better protective impact than non-robust models when it comes to protecting adversarial examples in AI security.The model created through confrontation training outperforms the non-robust model in terms of generalization performance for adversarial examples.It also produces more interpretable saliency maps.To better explain the nature of adversarial training,the saliency map explains why the robust model performs well in terms of generalization,demonstrates that the robust model can learn the key characteristics of examples and evaluates input examples using these characteristics.

adversarial trainingadversarial examplessaliency mapdeep learning

叶从玲

展开 >

安徽理工大学 计算机科学与工程学院,安徽 淮南 232001

对抗训练 对抗样本 显著图 深度学习

2024

洛阳理工学院学报(自然科学版)
洛阳理工学院

洛阳理工学院学报(自然科学版)

影响因子:0.229
ISSN:1674-5043
年,卷(期):2024.34(1)
  • 10