首页|基于多项式混沌展开的钢结构局部裂纹识别

基于多项式混沌展开的钢结构局部裂纹识别

扫码查看
裂纹预测是结构健康监测领域的重要研究内容之一.利用多项式混沌展开代理模型(Polynomial chaos expansion,PCE),对钢梁结构的局部损伤情况进行了预测.代理模型采用初始样本建立响应与损伤参数的联系,以替代原有的结构响应及其物理参数,在损伤识别时有效降低了重复调用有限元软件划分网格的频率以及有限元计算所需的时间,提高了识别效率,并采用Bregman迭代和贪心坐标下降法结合的稀疏PCE构造算法.数值算例和实验研究表明:PCE模型预测精度和计算效率均远远高于蝴蝶优化-人工神经网络模型(BOA-ANN)、粒子群优化-人工神经网络模型(PSO-ANN)和遗传优化-人工神经网络模型(GA-ANN),在简支梁结构和板结构中效果显著,为工程结构损伤识别与评估提供了理论方法.
Localized Crack Identification in Steel Structures Based on Polynomial Chaos Expansion
Crack prediction is one of the important research areas in the field of structural health monitoring.A polynomial chaos expan-sion(PCE)surrogate model was used to predict the local damage of steel beam structures.The PCE surrogate model employs initial samples to establish the link between the response and the damage parameters in place of the original structural response and its physi-cal parameters,and effectively reduceed the repetitive invocation of the finite element software to delineate the finite element mesh and the time required for finite element computation during damage identification,improving the identification efficiency;in addition,a sparse PCE construction algorithm combining Bregman iteration and greedy coordinate descent method was used.Numerical experiments showed that the PCE model's prediction accuracy and computing efficiency were much higher than the optimisation algorithms optimis-ing artificial neural network models(BOA-ANN,PSO-ANN,GA-ANN).It is proved that the method proposed in this paper shows sig-nificant effects in simply supported beam structures and plate structures,and provides a theoretical method for engineering structural damage identification and assessment.

structural health monitoringcrack predictionpolynomial chaos expansionsurrogate model

岳鑫鑫

展开 >

安徽科技学院建筑学院,安徽蚌埠 233030

结构健康监测 裂纹预测 多项式混沌展开 代理模型

安徽科技学院引进人才项目

JZYJ202109

2024

洛阳理工学院学报(自然科学版)
洛阳理工学院

洛阳理工学院学报(自然科学版)

影响因子:0.229
ISSN:1674-5043
年,卷(期):2024.34(2)
  • 10