首页|基于表面肌电信号的上肢康复动作识别

基于表面肌电信号的上肢康复动作识别

扫码查看
选取上肢肱桡肌、尺侧弯曲肌、肱肌、肱二头肌、三角肌作为采集对象,使用干电极片以及数据采集卡采集表面肌电信号(sEMG).将采集到的表面肌电信号进行预处理,提取时域特征、频域特征以及信息熵特征,将提取的特征用于卷积神经网络模型的训练,再抽取特征值部分样本作为验证集合进行交叉验证.实验结果表明,融合信息熵作为特征样本训练准确率高达 91%,明显高于单一特征样本以及融合时频域特征样本.
Upper Limb Rehabilitation Action Recognition Based on Surface EMG
In this paper,the brachioradialis muscle,ulnar flexor muscle,brachialis muscle,biceps brachialis muscle and deltoid mus-cle of upper limb were selected as the collection objects,and the surface EMG signal was collected by dry electrode and data acquisi-tion card.The time domain features,frequency domain features and information entropy features are extracted after pre-processing the collected surface EMG signals,and the extracted features are used to train the convolutional neural network model.Then some samples of eigenvalues are selected as verification sets for cross-verification.The experimental results show that the training accuracy of fusion information entropy as a feature sample is as high as 91%,which is obviously higher than that of single feature sample and fusion time-frequency domain feature sample.

sEMGpattern recognitionrehabilitation exerciseCNN

顾玉平、李宪华、张康、罗耀

展开 >

安徽理工大学 人工智能学院,安徽 淮南 232001

安徽理工大学 机电工程学院,安徽 淮南 232001

表面肌电信号 模式识别 康复运动 卷积神经网络

2024

洛阳理工学院学报(自然科学版)
洛阳理工学院

洛阳理工学院学报(自然科学版)

影响因子:0.229
ISSN:1674-5043
年,卷(期):2024.34(3)