首页|多导联ECG多尺度多特征融合估计呼吸率

多导联ECG多尺度多特征融合估计呼吸率

扫码查看
呼吸速率作为一系列临床诊断的关键生理参数,可预测一些慢性病和重大疾病的潜在特征,从应用广泛的心电图中估计呼吸速率具有设备低冗余的优势.从原始心电ECG信息中提取多导联心电信号,采用巴特沃斯滤波器进行预处理和小波多尺度变换来过滤信号中的噪声,再对ECG信号进行QRS峰值提取,利用峰值的时间值、幅度值分别计算对应呼吸信号的基线、幅值和频率特征,对获得的不同呼吸特征进行加权融合估计,得到更准确的呼吸速率.
Multi Lead ECG Multi-scale and Multi Feature Fusion Estimation of RR
Respiratory rate,as a key physiological parameter in clinical diagnosis,can predict potential features of some chronic and major diseases.Estimating respiratory rate from relatively widely used electrocardiograms has the advantage of low equipment redundan-cy.The algorithm in the article first extracts multi lead electrocardiogram signals from the original ECG information,preprocesses them using a Butterworth filter,and then uses wavelet multiscale transform to filter out noise in the signal.Then,QRS peak extraction is per-formed on the ECG signal,and the baseline,amplitude,and frequency characteristics of the corresponding respiratory signal are calcu-lated using the time and amplitude values of the peak.Finally,weighted fusion estimation is performed on the obtained different respira-tory features to obtain a relatively more accurate respiratory rate.

electrocardiogramrespiratory ratemultiple featuresmultiscale

任亚飞、姚雷博、黄向春

展开 >

洛阳理工学院电气工程与自动化学院,河南洛阳 471023

华北水利水电大学,河南郑州 450045

心电图 呼吸速率 多特征 多尺度

2024

洛阳理工学院学报(自然科学版)
洛阳理工学院

洛阳理工学院学报(自然科学版)

影响因子:0.229
ISSN:1674-5043
年,卷(期):2024.34(4)