林业建设2024,Vol.42Issue(5) :40-44.

基于深度学习的草原植物识别技术

Grassland plant image recognition technology based on deep learning

李兴福 杨晓丹 刘洁 王友三 陈丹
林业建设2024,Vol.42Issue(5) :40-44.

基于深度学习的草原植物识别技术

Grassland plant image recognition technology based on deep learning

李兴福 1杨晓丹 1刘洁 1王友三 1陈丹1
扫码查看

作者信息

  • 1. 国家林业和草原局产业发展规划院,北京 100010
  • 折叠

摘要

草原植物图像识别、分类是智慧林草的一个重要分支.近些年,随着大数据的快速发展,深度学习技术被越来越多的学者研究和使用.基于深度学习的草原植物识别受到相关领域学者和技术人员的关注和研究.综述了卷积神经网络、深度信念神经网络、递归神经网络、堆叠自编码器等四种基于深度学习网络模型及其在草原植物识别中的应用,介绍了基于深度学习的草原植物识别的技术路线、实现途径、面临的挑战及发展趋势,以期为相关研究和实践提供理论支撑.

Abstract

Grassland plant image recognition technology is an important branch of intelligent forestry and grassland.In recent years,with the rapid development of Big Data,deep learning technology has been studied and used by more and more researchers.Plant image recognition and classification based on deep learning has attracted attention and research from scholars and technicians in related fields.This article reviewed four deep learning network models,such as convolutional neural network theory,deep belief network theory,recurrent neural network theory,and stacked autoencoder theory and their application in grassland plant recognition.and introduced the technical approaches,implementation methods,challenges,and development trends associated with deep learning-based recognition of grassland plants,aiming to offer theoretical support for relevant research and practical applications.

关键词

草原植物图像识别/深度学习/神经网络模型/天然草原

Key words

plant image recognition/deep learning/neural network model/grassland

引用本文复制引用

出版年

2024
林业建设
中国林业工程建设协会 国家林业局昆明勘察设计院

林业建设

影响因子:0.323
ISSN:1006-6918
段落导航相关论文