首页|杉木人工林林分断面积生长模型的贝叶斯法估计

杉木人工林林分断面积生长模型的贝叶斯法估计

扫码查看
以江西杉木人工林为例,以Korf型、Richards型和Hossfeld型3种模型为基础,通过广义代数差分法(GADA)分别建立杉木林分断面积生长模型.结果表明:以Richards型为基础的杉木林分断面积预测精度最高,以Richards型模型为最优模型,分别基于贝叶斯法和传统法(非线性最小二乘法)估计杉木林分断面积生长模型.研究发现,利用贝叶斯法估计杉木林分断面积生长模型,预测精度相当且预测值的可靠性比传统法好.
Application of Bayesian Method in Stand Basal Area Prediction of Chinese Fir Plantation
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.),an endemic tree species in China' s subtropical area,is one of the most important fast-growing tree species for timber production in southern China.Based on the periodic data of the Chinese fir in Jiangxi province,three stand basal area models (Korf-based model,Richards -based model,and Hossfeld-based model) were developed using generalized algebraic difference approach (GA-DA).The results showed that Richards-based model was the best for modeling the stand basal area of Chinese fir in the study.Additionally,Bayesian method and Classical method (nonlinear least squares method) were used to estimate the Richards-based model.Although the precision of Bayesian method was nearly equal to that of the classical method,the model reliability using Bayesian method was better than using classical method.

Bayesian method, stand basal area, Chinese fir, Cunninghamia lanceolata

张雄清、张建国、段爱国

展开 >

中国林业科学研究院林业研究所,国家林业局林木培育重点实验室,北京100091

南京林业大学南方现代林业协同创新中心,江苏南京210037

贝叶斯法 传统法 林分断面积 杉木

国家自然科学基金中国林业科学研究院林业研究所科研院所基本科研业务资金项目中国林业科学研究院科研院所基本科研业务资金项目

31300537RIF2013-09CAFYBB2014QB002

2015

林业科学研究
中国林业科学研究院

林业科学研究

CSTPCDCSCD北大核心
影响因子:0.996
ISSN:1001-1498
年,卷(期):2015.28(4)
  • 16
  • 1