首页|基于低场核磁共振与近红外数据融合的豆粕蛋白质含量预测模型

基于低场核磁共振与近红外数据融合的豆粕蛋白质含量预测模型

扫码查看
在低场核磁共振与近红外光谱特征层数据融合的基础上建立豆粕蛋白质含量的预测模型,实现对豆粕生产过程中蛋白质含量的快速检测。采集待测样品的低场核磁共振与近红外光谱数据,对数据进行预处理。利用连续投影算法(SPA)提取低场核磁共振与近红外光谱的特征变量,应用偏最小二乘法、BP神经网络、麻雀搜索算法优化BP神经网络(SSA-BP),融合筛选出的特征变量,建立豆粕蛋白质含量预测模型。将低场核磁共振数据、近红外光谱数据单独建模与两种技术数据融合后构建的模型相比较,两种技术数据融合构建的SSA-BP模型效果最优,校正集决定系数为0。983 0,校正集均方根误差为 0。127 3,验证集决定系数为0。956 4,验证集均分根误差为 0。203 9。综上,本方法能够实现豆粕蛋白质含量的快速、无损及准确定量检测,也验证了低场核磁共振与近红外数据融合的可行性与有效性。
Prediction Model of Soybean Meal Protein Content Based on Low-field Nuclear Magnetic Resonance and Near-infrared Data Fusion
A prediction model for soybean meal protein content was developed using low-field NMR and near-infrared spectral data fusion for rapid protein content detection during soybean meal production.Firstly,the low-field NMR and near-infrared spectral data were collected from test samples.Secondly,the two collected signals were preprocessed and the Successive Projections Algorithm(SPA)was used to extract the characteristic variables of the low-field NMR and near-infrared spectra.The partial least squares method,BP(Back Propagation)neural network and Sparrow Search Algorithm(SSA)were employed to optimize the BP neural network(SSA-BP).The selected characteristic variables were fused to establish a prediction model for soybean meal protein content.The SSA-BP model,constructed by fusing low-field NMR and near-infrared feature layer data,showed the best performance,with a calibration set determination coefficient of 0.983 0,RMSE of 0.127 3,validation set determination coefficient of 0.956 4,and RMSE of 0.203 9.In summary,this method enables achieve rapid,non-destructive and accurate quantitative detection of soybean meal protein content while verifying,feasibility and effectiveness of low-field NMR and near-infrared data fusion.

proteinlow-field nuclear magnetism resonancenear-infraredfeature layer fusionsoybean meal protein

任国薇、郑圣国、卢丙、陆道礼、陈斌

展开 >

江苏大学 机械工程学院,江苏 镇江 212013

苏州纽迈分析仪器有限公司,江苏 苏州 215163

蛋白质 低场核磁共振 近红外 特征层融合 豆粕蛋白质

2025

粮油食品科技
国家粮食局科学研究院

粮油食品科技

北大核心
影响因子:0.684
ISSN:1007-7561
年,卷(期):2025.33(1)