首页|基于双注意力机制LSTM的粮食价格预测与解释研究

基于双注意力机制LSTM的粮食价格预测与解释研究

扫码查看
粮食价格波动复杂性增加,对政策制定、市场调控和粮农收益带来深远影响。传统预测方法难以有效捕捉复杂非线性特征,预测精度和适用性均受到限制。为解决这一实践问题,构建了基于双注意力机制的长短期记忆网络(LSTM)多元特征变量预测模型,引入特征注意力和时间注意力机制,从数据层面提升模型对关键变量的识别能力和预测精度。整合公众关注度指数作为新变量,基于可解释人工智能(XAI)框架中的TFT时序融合转换模型和SHAP模型,对影响粮食价格的主要因素及其传导路径进行详细解释。研究结果表明,双注意力机制显著优化了预测性能,公众关注度指数对短期价格波动有重要影响,国内期货价格和国际原油价格是影响粮食价格波动的主导因素。进一步分析提出,构建多部门协作的预测与预警体系,加强网络舆情动态监测与公众情绪管理,可有效应对粮食价格波动风险。
Research on Grain Price Prediction and Explanation Based on Double Attention Mechanism LSTM
The complexity of grain price fluctuations has significantly increased,profoundly impacting policy formulation,market regulation,and farmers'incomes.Traditional prediction methods struggle to effectively capture complex nonlinear characteristics,resulting in limitations in both prediction accuracy and applicability.To address this practical issue,a multi-feature variable prediction model based on dual-attention mechanism LSTM was developed.By introducing feature attention and temporal attention mechanisms,the model enhances its capability to identify key variables and improve prediction accuracy from the data level.Additionally,the integration of public attention indices as a new variable,combined with the TFT temporal fusion transformer model and SHAP model under the explainable artificial intelligence(XAI)framework,enables detailed interpretation of the major factors influencing grain prices and their transmission pathways.The research findings demonstrate that the dual-attention mechanism significantly optimizes prediction performance,with the public attention index playing a crucial role in short-term price fluctuations.Domestic futures prices and international oil prices are identified as dominant factors affecting grain price volatility.Further analysis suggests that establishing a multi-departmental collaborative prediction and early warning system,alongside enhanced monitoring of online public opinion dynamics and public sentiment management,can effectively mitigate the risks associated with grain price fluctuations.

grain pricesdeep learningattention mechanismpredictionpublic attention

刘宏宇

展开 >

黑龙江八一农垦大学 经济管理学院,黑龙江 大庆 163319

粮食价格 深度学习 注意力机制 预测 公众关注度

2025

粮油食品科技
国家粮食局科学研究院

粮油食品科技

北大核心
影响因子:0.684
ISSN:1007-7561
年,卷(期):2025.33(1)