首页|基于机器学习的红树林生物量遥感反演研究

基于机器学习的红树林生物量遥感反演研究

扫码查看
准确调查红树林生物量有利于评估红树林生态系统碳汇潜力.基于实地调查数据和Landsat 8遥感影像及DEM数据提取22个特征变量,利用随机森林(RF)、支持向量机模型(SVM)和极端梯度提升(XGBoost)3种机器学习方法,对西门岛红树林进行生物量遥感反演.结果表明:1)与RF算法和SVM算法相比,XGBoost算法构建的模型具有更好的估测效果(R2=0.932,ERMS=1.514 t/hm2,EMA=1.313 t/hm2),能更准确地估测红树林生物量;2)在递归特征消除法(RFE)筛选出的10个重要特征因子中,植被指数对红树林生物量估测的相对重要性较高;3)10个重要特征因子构成的XGBoost模型生物量反演得出,红树林生物量估测值范围为9.138~29.229 t/hm2,这与实地调查结果非常相近.XGBoost机器学习算法在红树林生物量反演中表现出较好的效果,该结果能为中国人工红树林碳储量的核算提供技术参考.
Remote Sensing Inversion of Mangrove Biomass Based on Machine Learning
Accurately investigating mangrove biomass is beneficial for evaluating the carbon sink potential of mangrove ecosystems.Based on field survey data,Landsat 8 remote sensing images and DEM data,22 feature variables were extracted to carry out remote sensing inversion of mangrove biomass in the Ximen Island,which used three machine learning methods:Random Forest(RF),Support Vector Machine model(SVM)and eXtreme Gradient Boosting(XGBoost).The results showed:1)Compared to the RF model and SVM model,the XGBoost model had a better estimation performance(R2=0.932,ERMS=0.514 t/hm2,EMA=0.313 t/hm2),which could more accurately estimate the mangrove biomass.2)Among the 10 important characteristic factors selected by Recursive Feature Elimination(RFE),the vegetation index has a relatively high importance in estimating mangrove biomass.3)The biomass inversion map of the XGBoost model,which is composed of 10 important characteristic factors,showed that the estimated mangrove biomass ranges from 9.138 to 29.229 t/hm2,which was similar to the findings of the field survey.It can be seen that the XGBoost algorithm shows good application capabilities in mangrove biomass.This research will provide a technical reference for the accounting of carbon storage in the Chinese mangroves.

mangrovesLandsat 8XGBoostbiomassremote sensing inversion

郝君、吕康婷、胡天祺、王云阁、徐刚

展开 >

浙江安防职业技术学院,浙江温州 325000

中国矿业大学,江苏徐州 221116

温州市天空地态势感知应用技术协同创新中心,浙江温州 325000

温州市未来城市研究院,浙江温州 325000

温州市自然灾害遥感监测重点实验室,浙江温州 325000

中南大学地球科学与信息物理学院,长沙 410083

展开 >

红树林 Landsat 8 XGBoost 生物量 遥感反演

温州市基础性科研项目浙江省教育厅一般科研项目

S2023030Y202351948

2024

林业资源管理
国家林业局调查规划设计院

林业资源管理

北大核心
影响因子:0.757
ISSN:1002-6622
年,卷(期):2024.(1)
  • 1
  • 34