首页|基于SAR和光学数据融合的山区森林干扰检测

基于SAR和光学数据融合的山区森林干扰检测

扫码查看
高效的森林干扰检测方式可以及时预防并减轻森林灾害,保护生态系统功能.针对融合多源数据对山区森林干扰进行检测时往往受到地形影响的问题,构建坡向分类算法,划分检测区域,以降低地形起伏对雷达变化比(RCR)的影响.通过融合合成孔径雷达(SAR)和光学卫星数据,利用改进的RCR方法与NDVI时间序列,提出一种新的森林干扰检测方法.研究结果表明:1)通过坡向分类算法改进RCR方法有效扩大了 19.48%检测区域面积,可覆盖更多的干扰区域,并提升检测准确性;2)采用SAR与光学数据相融合的森林干扰检测方法,其总体检测精度为89.24%,与仅采用单一传感器的SAR数据、光学数据相比,检测精度分别提高了 11.11%、13.32%.相较于单一传感器方法,此方法能在不同时间和天气条件下获取丰富的连续检测信息,在提高森林干扰的检测能力方面具有更大的潜力和优势,可为今后森林资源管理和生态保护提供更加全面和准确的信息支持.
Forest Disturbance Detection in Mountainous Areas Based on SAR and Optical Data Fusion
Efficient forest disturbance detection methods can prevent and mitigate forest disasters in time and protect the ecosystem.To address the issue of forest interference in mountainous areas,which is often affected by terrain when integrating multi-source data,this study develops a slope direction classification algorithm to delineate the detection area.This mitigates the effect of terrain relief on the radar rate of change(RCR).A novel forest disturbance detection method was proposed on the basis of the fusion of synthetic aperture radar(SAR)and optical satellite data,utilizing an enhanced RCR approach with NDVI time series.The results were as follows:1)The enhanced RCR methodology markedly expands the detection area 19.48%through the slope classification method,encompassing a greater scope of interference areas and enhancing the detection accuracy.2)The overall detection accuracy based on the fusion data of SAR and optical satellite is 89.24%,which is 11.11%and 13.32%higher than that of SAR and optical satellite with only a single sensor.Compared with the single-sensor method,this research method can obtain rich,continuous detection information under different time and weather conditions,and it has greater potential and advantages in improving the detection capability of forest disturbance,which can provide more comprehensive and accurate information support for forest resource management and ecological protection in the future.

forest disturbanceSARradar change ratioNDVI time seriesslope direction classification

王博、陈永刚、闫彦廷

展开 >

浙江农林大学环境与资源学院,杭州 311300

森林干扰 SAR 雷达变化比 NDVI时间序列 坡向分类

2024

林业资源管理
国家林业局调查规划设计院

林业资源管理

北大核心
影响因子:0.757
ISSN:1002-6622
年,卷(期):2024.(3)