首页|一种基于对比策略强化知识推理的元学习框架

一种基于对比策略强化知识推理的元学习框架

扫码查看
随着知识图谱中新实体不断涌现,现有嵌入式模型难以获取新实体嵌入,导致模型预测精度降低.为此,提出一种基于对比策略强化知识推理的元学习框架.首先,该框架通过对路径重要度排序,提升隐式信息的提取效率;然后,使用一种对比策略表示强关联路径,并依据负路径与目标关系之间余弦相似性剔除过多的冗余信息;最后,使用元学习来转移独立于实体的嵌入.实验结果表明:在链接预测知识图谱任务中,Hits@10 指标最高可达96.24%,说明该框架可以有效提升预测精度.
A Meta-learning Framework for Enhancing Knowledge Reasoning Based on Contrastive Strategies
With the continuous emergence of new entities in the knowledge graph,it is difficult for existing embedded models to obtain new entity embeddings,resulting in a decrease in model prediction accuracy.Accordingly,the study proposes a meta-learning framework based on contrastive strategies to strengthen knowledge reasoning.First,the framework improves the extraction efficiency of implicit information by sorting the importance of paths,and then u-ses a comparison strategy to represent strongly associated paths.Excessive redundant information is removed according to the cosine similarity between negative paths and target relations,and finally meta-learning is used to transfer entity-inde-pendent embeddings.The experimental results show that in the link prediction knowledge map task,the value of the Hits@10 index can reach up to 96.24%,indicating that the framework can effectively improve prediction accuracy.

inductive reasoningknowledge completioncomparison strategymeta-learning

张希权、党建武、王阳萍

展开 >

兰州交通大学 电子与信息工程学院,兰州 730070

归纳推理 知识补全 对比策略 元学习

国家自然科学基金国家自然科学基金甘肃省教育科技创新项目中央引导地方科技发展专项甘肃省知识产权计划高校科研创新平台重大培育项目

62067006623670052021jyjbgs-0522ZY1QA00221ZSCQ0132024CXPT-17

2024

兰州交通大学学报
兰州交通大学

兰州交通大学学报

影响因子:0.532
ISSN:1001-4373
年,卷(期):2024.43(2)
  • 22