首页|基于改进YOLOv7算法的接触网吊弦线夹螺母状态识别方法

基于改进YOLOv7算法的接触网吊弦线夹螺母状态识别方法

扫码查看
针对传统的深度学习算法在处理铁路接触网吊弦线夹螺母时效果不佳,而人工巡检吊弦线夹螺母速度慢、难度大问题,提出一种改进的 YOLOv7 算法对接触网吊弦线夹螺母状态进行识别.首先,该算法在 YOLOv7 原有模型特征提取网络的末端融合卷积和自我注意力机制,使算法既拥有注意力和卷积的优势,又与单一的卷积或注意力相比具有较小的计算量,以提升缺陷检测的速度;然后,在特征提取网络的输出端引入空间到深度卷积模块,以空间层到深度层取代池化层,以非跨行卷积层取代跨行卷积层,强化算法对螺母缺陷状态的识别能力;最后,在输出层加入新的移动网络轻量级坐标注意力机制,以得到方向感知和位置敏感的注意图,互补地应用于输出特征图,以更有利于接触网吊弦线夹螺母的识别.仿真实验结果表明:在未经裁剪的接触网吊弦数据集上,该算法对吊弦线夹螺母状态识别的正确率达到 90%以上,平均检测准确率为 98.5%,证明改进后 YOLOv7 算法在兼具检测速度的同时能更加准确地识别接触网吊弦线夹螺母状态.
Contact Wire Clamp Nut State Recognition Method Based on Improved YOLOv7 Algorithm
A modified you only look once version 7(YOLOv7)algorithm is proposed to address the issues of poor performance of traditional deep learning algorithms in dealing with small targets such as suspension wire clamp nuts in railway overhead contact systems,as well as slow and difficult manual inspection of suspension wire clamp nuts.Firstly,the algorithm integrates convolution and self attention mechanisms at the end of the feature extraction net-work of the original you only look once version 7 model,giving the algorithm the benefits of attention and convolu-tion,as well as the minimum computational complexity compared to pure convolution or attention,improving the speed of defect detection;Then,an space to depth convolution module is introduced at the output end of the feature extraction network,replacing the pooling layer with a spatial to depth layer and the cross row convolution layer with a non-cross row convolution layer to enhance the algorithm's ability to recognize nut defect states;Finally,a new lightweight coordinate attention mechanism for mobile networks was added to the output layer,which can generate direction awareness and position sensitivity attention maps.These maps can be applied complementarily to the input feature maps,which is more conducive to the recognition of small targets such as suspension wire clamps and nuts in the contact network.The simulation experiment results show that the algorithm has a recognition accuracy of over 90%and an average detection precision(mAP@0.5)value of 98.5%for the status of contact wire suspension clamp nuts on the uncut suspension wire dataset.The improved YOLOv7 algorithm is verified to be capable of identifying the status of contact wire suspension clamp nuts more accurately while maintaining detection speed.

catenary suspension wireidentification of the status of the suspension wire clamp nutsyou only look once version 7(YOLOv7)self attention and convolutional mixing(ACmix)space to depth(SPD)

曹文翔、顾桂梅

展开 >

兰州交通大学 自动化与电气工程学院,兰州 730070

接触网吊弦 吊弦线夹螺母状态识别 YOLOv7 自注意力与卷积融合 空间到深度卷积模块

国家自然科学基金

62067006

2024

兰州交通大学学报
兰州交通大学

兰州交通大学学报

影响因子:0.532
ISSN:1001-4373
年,卷(期):2024.43(2)
  • 21