首页|融合贝叶斯优化的轨面缺陷检测模型压缩方法

融合贝叶斯优化的轨面缺陷检测模型压缩方法

扫码查看
针对钢轨表面缺陷检测模型人工调参繁琐且模型容量大的问题,提出一种融合贝叶斯优化的轨面缺陷检测模型压缩方法.首先,利用贝叶斯优化算法得到平衡模型稀疏性与精度的最优超参数;其次,将所得超参数引入稀疏训练并在侧重压缩比和精度的两种策略下对检测模型进行压缩,最后,通过知识蒸馏矫正压缩模型的参数从而补偿稀疏训练导致的精度损失.实验结果显示,该方法在两种稀疏训练策略下得到的轻量化轨面检测模型压缩率可达到96.35%和93.22%,且在硬件部署后的检测速度提升超过两倍,能够避免人工调参对压缩精度的负面影响.
Compression Method of Rail Surface Defect Detection Model Combined with Bayesian Optimization
Aiming at the problem of cumbersome manual parameter adjustment and large model capacity of rail surface defect detection model,a compression method of rail surface defect detection model incorporating Bayesian optimiza-tion is proposed.Firstly,the Bayesian optimization algorithm is used to obtain the optimal hyperparameters that bal-ance the sparsity and accuracy of the model;secondly,the obtained hyperparameters are introduced into the sparse training and the detection model is compressed under two strategies focusing on the compression ratio and the accu-racy;finally,the parameters of the compressed model are corrected through the knowledge distillation to compensate for the loss of accuracy caused by the sparse training.The experimental results show that the compression ratio of the lightweight track surface detection model obtained by this method under the two sparse training strategies can reach 96.35%and 93.22%,respectively,and the detection speed is improved by more than two times after the hard-ware is deployed,which can avoid the negative impact of manual parameterization on the compression accuracy.

rail surface defectsdefect detection modelmodel compressionBayesian optimizationsparse training

井庆龙、闵永智、李成学

展开 >

兰州交通大学自动化与电气工程学院,兰州 730070

兰州交通大学甘肃省人工智能与图形图像工程中心,兰州 730070

国网甘肃省电力公司,兰州 730070

钢轨表面缺陷 缺陷检测模型 模型压缩 贝叶斯优化 稀疏训练

2024

兰州交通大学学报
兰州交通大学

兰州交通大学学报

影响因子:0.532
ISSN:1001-4373
年,卷(期):2024.43(5)