首页|基于自适应动态关联矩阵的时空一致性交通流预测研究

基于自适应动态关联矩阵的时空一致性交通流预测研究

扫码查看
针对现有交通流预测研究中时空内在关联性提取不足、路网空间动态性表征不充分的问题,提出一种基于 自适应动态空间关联度矩阵的交通流预测模型,该模型通过在Transformer_encoder模型内部嵌入空间特征提取模块、多特征分级融合模块与其多头自注意力机制结合,构建时空特征一致性提取模块,实现交通流时空内在关联性的充分提取.其中,空间特征提取模块通过构建自适应动态空间关联度矩阵,以充分表征当前路网邻域的动态空间特征,并通过构建空间特征筛选网络以消除冗余信息,筛选关键影响特征.此外,多特征分级融合模块通过分级融合交通流原始时序特征和时空特征,以实现细致全面的时空相关性挖掘.实验在高速路网PeMS04、PeMS08公开数据集上进行测试,结果表明,所提模型相较于其他基准线模型具有更优的预测效果.
Research on Spatiotemporally Consistent Traffic Flow Prediction Based on Adaptive Dynamic Correlation Matrix
To address the issues of insufficient extraction of spatio-temporal intrinsic correlation and inadequate char-acterization of spatial dynamics in existing traffic flow prediction research,a traffic flow prediction model is proposed based on an adaptive dynamic spatial correlation matrix.The model constructs a spatio-temporal feature consistency extraction module by embedding a spatial feature extraction module and a multi-feature hierarchical fusion module in-side the Transformerencoder model,combined with its multi-head self-attention mechanism,to achieve the full extraction of the spatio-temporal intrinsic correlation of traffic flow.The spatial feature extraction module constructs the adaptive dy-namic spatial correlation matrix to fully characterize the dynamic spatial features of the road network's neighborhood,while the spatial feature filtering network eliminates redundant information and highlights key influential features.Addi-tionally,the multi-feature hierarchical fusion module conducts detailed and comprehensive mining of spatial and tem-poral correlations by hierarchically fusing the original temporal and spatial features of traffic flow.The experiments are tested on the PeMS04 and PeMS08 public datasets of the high-speed road network,and the results show that the proposed model has better prediction results compared to other baseline models.

traffic flow predictionspatio-temporal correlationdynamicsTransformer

侯越、周瑞娟、张鑫

展开 >

兰州交通大学电子与信息工程学院,兰州 730070

交通流预测 时空相关性 动态性 Transformer

2024

兰州交通大学学报
兰州交通大学

兰州交通大学学报

影响因子:0.532
ISSN:1001-4373
年,卷(期):2024.43(6)