首页|基于CNN-Bi-LSTM网络的城轨短时客流预测

基于CNN-Bi-LSTM网络的城轨短时客流预测

扫码查看
城市轨道交通短时客流预测的精确性对城轨站点在工作日早晚高峰的客流管控以及旅客出行方案决策等具有重要意义,因此提出基于深度学习技术构建卷积神经网络(CNN)结合双向长短时记忆神经网络(Bi-LSTM)的城轨短时客流预测模型,结合Bi-LSTM对时序数据特征双向提取能力的同时,利用CNN实现数据局部特征提取,增强模型的泛化能力.选取上海市地铁1号线徐家汇站的工作 日客流数据为基础,对CNN层的层数和卷积核长度寻优,并分别对模型进行消融实验与对比实验.实验结果表明,CNN-Bi-LSTM的预测精度最优,RMSE与MAPE分别为16.699 9以及13.52%,证明了该模型在城轨短时客流预测的有效性.
Short-term Passenger Flow Prediction for Urban Railway Based on CNN-Bi-LSTM Network
The accuracy of short-term passenger flow prediction for urban rail transit is of great significance for the control of passenger flow at urban rail stations during the morning and evening peaks on weekdays,as well as for the decision-making of passenger travel programs.Therefore,a short-time passenger flow prediction model of urban rail transit using convolutional neural network(CNN)combined with bidirectional long-short-term memory neural net-work(Bi-LSTM)is proposed based on deep learning,which combines the bidirectional extraction capability of Bi-LSTM for time series data features,and at the same time,CNN is employed in realizing the local feature extraction of data,so as to enhance the generalization capability of the model.The weekday passenger flow data from Xujiahui Sta-tion of Shanghai Metro Line 1 is selected as the basis for optimization of the number of layers and convolution kernel length of the CNN layers,and the ablation and comparison experiments are conducted for the model,respectively.The experimental results show that the prediction accuracy of CNN-Bi-LSTM is optimal,and the RMSE and MAPE are 16.699 9 and 13.52%,respectively,which proves the effectiveness of the model in predicting the short-term pas-senger flow of urban railways.

urban railwayshort-term passenger flow predictiondeep learningBi-LSTMCNN

赵靳辉、刘斌、田志强、武万鹏

展开 >

兰州交通大学交通运输学院,兰州 730070

兰州交通大学高原铁路运输智慧管控铁路行业重点实验室,兰州 730070

中国铁路北京局集团有限公司调度所,北京 100000

城市轨道交通 短时客流预测 深度学习 Bi-LSTM CNN

2024

兰州交通大学学报
兰州交通大学

兰州交通大学学报

影响因子:0.532
ISSN:1001-4373
年,卷(期):2024.43(6)