首页|基于TAM与TTF整合模型的大学生对生成式人工智能的使用意愿研究

基于TAM与TTF整合模型的大学生对生成式人工智能的使用意愿研究

扫码查看
为了探究大学生对生成式人工智能的使用意愿,基于TAM与TTF整合模型,利用统计软件SPSS 26.0与Amos 24.0对问卷调查数据进行分析.研究结果表明,任务特性、技术特性正向影响任务技术适配;任务技术适配正向影响感知易用性、感知有用性与持续使用意愿;感知易用性对感知有用性产生正向影响;感知易用性、感知有用性均正向影响持续使用意愿;感知易用性、感知有用性在任务技术适配与持续使用意愿之间承担中介效果.
A Study of Factors Influencing College Students'Willingness to Use Generative AI Consistently Based on the TAM and TTF Integration Model
This paper aims to explore college students'intention to use generative artificial intelligence.Based on an integrated framework of the Technology Acceptance Model(TAM)and the Task-Technology Fit Model(TTF),this paper collected data through a questionnaire survey and conducted statistical analysis using SPSS 26.0 and AMOS 24.0 software.The results indicate that task characteristics and technology characteristics have a positive impact on task-technology fit.Task-technology fit further positively influences users'perceived ease of use,perceived usefulness,and continuous usage intention.Perceived ease of use positively affects perceived usefulness.Both perceived ease of use and perceived usefulness have a positive effect on continuous usage intention.Additionally,perceived ease of use and perceived usefulness play mediating roles between task-technology fit and continuous usage intention.

Technology Acceptance Model(TAM)Task-Technology Fit Model(TTF)generative artificial intelligencecollege students

余菲、王儒

展开 >

铜陵学院,安徽 铜陵 244002

技术接受模型 任务技术适配模型 生成式人工智能 大学生

2024

柳州职业技术学院学报
柳州职业技术学院

柳州职业技术学院学报

影响因子:0.21
ISSN:1671-1084
年,卷(期):2024.24(6)