首页|基于改进YOLOv5的织物缺陷检测

基于改进YOLOv5的织物缺陷检测

扫码查看
鉴于织物表面纹理复杂导致织物缺陷检测准确率低以及小目标检测困难等问题,提出一种基于改进YOLOv5的织物缺陷检测算法.首先,在YOLOv5的骨干网络上,增加CBAM注意力机制,从而强化有用的特征信息弱化无用的特征信息;其次,将Neck层的路径聚合网络(PANet)用加权双向特征金字塔网络(Bi-FPN)替换,从而更好地平衡多尺度特征信息,提高小目标检测的特征能力.最后,通过改进损失函数,使用Focal EIOU Loss损失函数来代替CIOU Loss损失函数,不仅使得收敛速度更快,而且可以有效的解决难易样本不平衡问题.实践证明:改进后的训练模型平均精度均值mAP值为84.5%,比未改进增加了 4.7%,可满足实际生产中的织物缺陷检测要求.
Fabric defect detection based on improved YOLOv5
A fabric defect detection algorithm based on improved YOLOv5 was proposed in this paper to address the challenges of low accuracy in fabric defect detection caused by the complexity of fabric surface textures and the difficulty in detecting small targets.Firstly,the CBAM attention mechanism was added to the backbone network of YOLOv5 to enhance useful feature information while reducing irrelevant information.Secondly,the Path Aggregation Network(PANet)in the Neck layer was replaced with the Weighted Bi-directional Feature Pyramid Network(Bi-FPN)to better balance multi-scale feature information and improve the detection capability of small targets.Finally,the loss function was improved by introducing the Focal EIOU Loss function,which replaces the CIOU Loss function,not only accelerates the convergence speed but also effectively addresses the issue of imbalanced difficult and easy samples.Practice shows that the mAP for improved training model is 84.5%,a 4.7%increase compared to the non-improved model,meeting the fabric defect detection requirements in actual production.

YOLOv5defect detectionattention mechanismBi-directional Feature Pyramid NetworkFocal EIOU Loss

陈淼、张胜利、季坚莞

展开 >

浙江理工大学科技与艺术学院,浙江绍兴 312369

YOLOv5 缺陷检测 注意力机制 加权双向特征金字塔 Focal EIOU Loss

教育部产学合作协同育人项目浙江理工大学科技与艺术学院劳动一流课程建设项目

202102357013Kykc2206

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(1)
  • 5