首页|基于深度学习的毛/粘混纺织物混纺比检测技术

基于深度学习的毛/粘混纺织物混纺比检测技术

扫码查看
针对常规织物混纺比检测方法工作效率低的问题,提出一种基于深度学习技术的毛/粘混纺织物混纺比检测方法.以单阶段目标检测算法(YOLOv5)为基础,采集羊毛纤维和粘胶纤维的光学显微镜图像构建数据集,使用CSPDarknet53 网络(Cross Stage Partial Network)从数据集中提取纤维特征,通过特征金字塔(FPN)和路径聚合网络(PAN)结合的方式完成不同层次特征的融合;在主干网络引入卷积注意力模块(CBAM)以加强局部特征的提取能力.训练后的YOLOv5 模型平均精度均值达 0.93,可实现毛/粘混纺织物混纺比的自动检测.采用光学显微镜法和化学溶解法对模型的可靠性进行校验,差异在 2%以内,说明该方法在毛/粘混纺织物混纺比快速检测领域具有良好的应用前景.
Blending ratio detection of wool/viscose blended fabrics based on deep learning
Aiming at the problem of low efficiency of conventional fabric blending ratio detection methods,a blending ratio detection method of wool/viscose blended fabric based on deep learning technique was proposed.Based on the single-stage target detection algorithm(YOLOv5),optical microscope images of wool fibers and viscose fibers were collected to construct a dataset,fiber features were extracted from the dataset using the CSPDarknet53 network,and the fusion of different levels of features was accomplished by combining FPN and PAN;a convolutional block attention module(CBAM)was introduced in the backbone network to enhance the extraction capability of local features.The average mean precision of the trained YOLOv5 model reached 0.93,which can realize the automatic detection of blending ratio of wool/viscose blended fabrics.The reliability of the model was verified using optical microscopy method and chemical dissolution method,and the results were within 2%difference,indicating that the method has good application prospects in the field of rapid detection of blending ratio of wool/viscose blended textiles.

wool/viscose blended fabricblending ratiodeep learningYOLOv5CBAM

林素存、魏菊、常帅才

展开 >

大连工业大学 纺织与材料工程学院,辽宁 大连 116034

毛/粘混纺织物 混纺比 深度学习 YOLOv5 卷积注意力模块

大连市科技创新基金

2019J12SN71

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(2)
  • 19