首页|基于深度学习的快时尚服装产品销售预测模型构建

基于深度学习的快时尚服装产品销售预测模型构建

扫码查看
为了准确预测快时尚服装产品销售量,捕捉在间歇性或异常峰值销量中的时间信息,基于深度自回归模型,引入时间注意力机制,改进其网络结构设计,构建全局时序模型对快时尚服装产品销售进行预测.研究发现:基于注意力机制的深度自回归模型,能够从所有销售数据中有效学习到服装产品销售正常值与间歇性或异常峰值的时间关联关系,能够识别复杂模式下产品销售量的短期波动与长期趋势,且性能优于其他经典模型,验证了基于深度学习构建快时尚服装产品销售预测模型的可行性.
Construction of fast fashion clothing sales prediction model based on deep learning
In order to accurately predict the sales volume of fast fashion clothing products and capture the time information in the intermittent or abnormal peak sales volume,based on the deep autoregressive model,the time attention mechanism was introduced,the network structure design was improved,and the global timing model was constructed to predict the sales volume of fast fashion clothing products.The study found that the deep autoregressive model based on the attention mechanism can effectively learn the time correlation between the normal sales value of clothing products and the intermittent or abnormal peak value from all sales data,and can identify the long-term trend and short-term fluctuations of product sales under complex patterns,and its performance is better than other classical models.The feasibility of constructing fast fashion clothing sales forecasting model based on deep learning was verified.

deep learningsales predictiondata drivenfast fashionAT-DeepAR model

李鑫、胡永仕、邵博、苏晓丽

展开 >

福建理工大学 交通运输学院,福建 福州 350118

美国威斯康星大学麦迪逊分校 工程学院,美国 麦迪逊 53706

福州大学 经济与管理学院,福建 福州 350108

深度学习 销售预测 数据驱动 快时尚 AT-DeepAR模型

国家社会科学基金

20BGL112

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(4)
  • 15