首页|BP神经网络优化Stearns-Noechel模型的羊毛色纺纱配色

BP神经网络优化Stearns-Noechel模型的羊毛色纺纱配色

扫码查看
为了提升羊毛色纺纱配色的精确度,通过数理统计方法研究颜色特征中的色相、明度、饱和度与Stearns-Noechel模型参数M值之间的关系,采用BP神经网络对Stearns-Noechel模型参数M值进行优化,并与传统的最优平均M值和波长优化M值等方法进行对比.结果表明:采用BP神经网络优化Stearns-Noechel模型的配色方法比其他 2 种传统优化方法在颜色预测精确度上都有提高.在 99 个羊毛混色纱试验样本中,BP神经网络优化方法得到的平均色差最小,为 1.177 3,其中色差小于 1 的样本占 54%,结合颜色特征采用BP 神经网络优化的Stearns-Noechel模型参数具有较好的效果,对羊毛色纺纱的颜色预测精确度有较大的提高.
BP neural network optimization of Stearns-Noechel model for color matching of wool color spinning yarns
In order to improve the accuracy of color matching of wool color spinning yarns,the relationship between hue,brightness,saturation in color characteristics,and the parameter M value of the Stearns-Noechel model was investigated by mathematical and statistical methods.The parameter M value of the Stearns-Noechel model was optimized by using the backpropagation(BP)neural network,and compared with the traditional methods such as the optimal average M value and the wavelength-optimized M value.The results show that the optimization of color matching methods of the Stearns-Noechel model using the BP neural network has some improvement in color prediction accuracy than the other two traditional optimization methods.Among 99 samples of wool color-blended yarns,the BP neural network optimization method obtained the smallest average color difference of 1.177 3.In addition,54%of these samples had a color difference of less than 1.This indicates that the use of combining color features and the optimization of parameters of the Stearns-Noechel model using the BP neural network has good results and significantly improves the accuracy of color prediction accuracy of wool color-blended yarns.

colored spun yarnStearns-Noechel modelbackpropagation neural networkcolor predictioncolor features

史帅杰、李启正、裘柯槟、朱杰、张斌、纪乐福、陈维国

展开 >

浙江理工大学 纺织科学与工程学院,浙江 杭州 310018

嘉兴南湖学院,浙江 嘉兴 314001

浙江中鼎纺织科技有限公司,浙江 嘉兴 314511

浙江理工大学桐乡研究院有限公司,浙江 嘉兴 314599

展开 >

色纺纱 Stearns-Noechel模型 BP神经网络 颜色预测 颜色特征

中国纺织工业联合会科技指导性项目

2023028

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(4)
  • 15