首页|BP神经网络优化Stearns-Noechel模型的羊毛色纺纱配色

BP神经网络优化Stearns-Noechel模型的羊毛色纺纱配色

BP neural network optimization of Stearns-Noechel model for color matching of wool color spinning yarns

扫码查看
为了提升羊毛色纺纱配色的精确度,通过数理统计方法研究颜色特征中的色相、明度、饱和度与Stearns-Noechel模型参数M值之间的关系,采用BP神经网络对Stearns-Noechel模型参数M值进行优化,并与传统的最优平均M值和波长优化M值等方法进行对比.结果表明:采用BP神经网络优化Stearns-Noechel模型的配色方法比其他 2 种传统优化方法在颜色预测精确度上都有提高.在 99 个羊毛混色纱试验样本中,BP神经网络优化方法得到的平均色差最小,为 1.177 3,其中色差小于 1 的样本占 54%,结合颜色特征采用BP 神经网络优化的Stearns-Noechel模型参数具有较好的效果,对羊毛色纺纱的颜色预测精确度有较大的提高.
In order to improve the accuracy of color matching of wool color spinning yarns,the relationship between hue,brightness,saturation in color characteristics,and the parameter M value of the Stearns-Noechel model was investigated by mathematical and statistical methods.The parameter M value of the Stearns-Noechel model was optimized by using the backpropagation(BP)neural network,and compared with the traditional methods such as the optimal average M value and the wavelength-optimized M value.The results show that the optimization of color matching methods of the Stearns-Noechel model using the BP neural network has some improvement in color prediction accuracy than the other two traditional optimization methods.Among 99 samples of wool color-blended yarns,the BP neural network optimization method obtained the smallest average color difference of 1.177 3.In addition,54%of these samples had a color difference of less than 1.This indicates that the use of combining color features and the optimization of parameters of the Stearns-Noechel model using the BP neural network has good results and significantly improves the accuracy of color prediction accuracy of wool color-blended yarns.

colored spun yarnStearns-Noechel modelbackpropagation neural networkcolor predictioncolor features

史帅杰、李启正、裘柯槟、朱杰、张斌、纪乐福、陈维国

展开 >

浙江理工大学 纺织科学与工程学院,浙江 杭州 310018

嘉兴南湖学院,浙江 嘉兴 314001

浙江中鼎纺织科技有限公司,浙江 嘉兴 314511

浙江理工大学桐乡研究院有限公司,浙江 嘉兴 314599

展开 >

色纺纱 Stearns-Noechel模型 BP神经网络 颜色预测 颜色特征

中国纺织工业联合会科技指导性项目

2023028

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(4)
  • 15