首页|基于标识解析的机采棉质量数据追溯方法

基于标识解析的机采棉质量数据追溯方法

扫码查看
机采棉加工检验环节作为农业和工业数据交汇的关键节点,其数据来源不一且类型多样,无法及时有效对存在质量问题的机采棉数据进行溯源与根因分析.为实现机采棉产品全流程质量信息溯源,以机采棉加工检测过程为研究对象,设计了一种基于标识解析的棉花加工环节业务模型;并构建了基于标识的元数据映射关系结构化数据溯源方法;然后,将数据仓库中的各种棉花数据表全量导入元数据管理平台,支持通过Hive语句构造、增量同步等手段存储全量信息表和字段的元数据结构映射关系;最后,采用聚合查询方法并保留表与字段间的血缘结构,有效地对元数据库中业务模型的数据进行搜索与查询,帮助数据分析人员快速定位到问题数据的来源和加工检测过程.
Traceability of machine picking cotton quality data based on identity resolution
As a key node in the intersection of agricultural and industrial data,the machine-picked cotton processing and inspection link has different data sources and types,which makes it impossible to trace and analyze the root cause of machine-picked cotton data with quality problems in a timely and effective manner.In order to realize the traceability of the whole process quality information of machinepicked cotton products,the machinepicked cotton processing and inspection process were taken as the research object,a business model of the cotton processing link based on the identification resolution was designed;and a data traceability method based on the structured metadata mapping relationship of identification was constructed;and then various cotton data tables in the data warehouse were imported into the metadata management platform in full volume,which supports the storage of full volume information tables through the means of construction of Hive statements and incremental synchronization and other means to store the metadata structure mapping relationship of full-volume information tables and fields.Finally,the aggregated query method was used and the blood structure between tables and fields were retained,the data in the business model in the metadata repository were effectively searched and queried to help data analysts quickly locate the source of problematic data and the processing and detection process.

identity resolutionmetadatamachinepicked cottondata traceabilitylineage analysis

路程、孙文磊、常赛科、财音宝音、吴文宁、姜任奔

展开 >

新疆大学 智能制造现代产业学院,新疆 乌鲁木齐 830046

标识解析 元数据 机采棉 数据溯源 血缘分析

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(7)